Fuzzy-ViT: A Deep Neuro-Fuzzy System for Cross-Domain Transfer Learning from Large-scale General Data to Medical Image

人工智能 计算机科学 神经模糊 深度学习 模糊逻辑 比例(比率) 学习迁移 领域(数学分析) 模式识别(心理学) 模糊控制系统 机器学习 数学 数学分析 物理 量子力学
作者
Qiankun Li,Yimou Wang,Yani Zhang,Zhaoyu Zuo,Junxin Chen,Wei Wang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:4
标识
DOI:10.1109/tfuzz.2024.3400861
摘要

The surge in visual general big data has notably advanced data-driven deep learning-based computer vision technologies. Transformer-based methods shine in this era of big data because of their attention mechanism architecture and demand for massive data. However, the difficulty of obtaining medical images has caused the field to continue facing the limited-data challenge. In this paper, we propose a novel deep neuro-fuzzy system named Fuzzy-ViT, which synergistically integrates fuzzy logic with the Vision Transformer (ViT) for cross-domain transfer learning from large-scale general data to medical image domain. Specifically, Fuzzy-ViT utilizes a ViT backbone pre-trained on extensive general datasets such as ImageNet-21K, LAION-400M, and LAION-2B to extract rich general features. Then, a Fuzzy Attention Cross-Domain Module (FACM) is presented to transfer general features to medical features, thereby enhancing the medical image analysis. Thanks to the Fuzzy System Transitioner (FST) in FACM, fuzzy and uninterpretable general domain features can be effectively converted into those needed in the medical domain. In addition, the Attention Mechanism Smoother (AMS) in FACM smoothes the conversion outcomes, ensuring a harmonious integration of the fuzzy system with the neural network architecture. Experimental results demonstrate that the proposed Fuzzy-ViT achieves state-of-the-art and satisfactory performance on popular medical image benchmarks (BreakHis and HCRF) with 93.37% and 97.22% F1 scores. Detailed ablation analysis demonstrates that the effectiveness of our method for bridging large general visual and medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三十七度医完成签到,获得积分10
3秒前
Letter完成签到 ,获得积分10
3秒前
邓桂灿完成签到,获得积分20
4秒前
虚心蜗牛完成签到 ,获得积分10
4秒前
白桃味汽水完成签到,获得积分20
5秒前
ling发布了新的文献求助10
5秒前
糖果朱完成签到,获得积分10
5秒前
6秒前
7秒前
9秒前
无聊的火龙果应助liu采纳,获得20
9秒前
Qing完成签到,获得积分10
9秒前
10秒前
斯文败类应助是玥玥啊采纳,获得10
10秒前
星辰大海应助ling采纳,获得10
11秒前
suansuan发布了新的文献求助10
13秒前
djx123发布了新的文献求助10
16秒前
16秒前
洋洋发布了新的文献求助10
19秒前
简单的月饼完成签到,获得积分10
19秒前
19秒前
英俊的铭应助雨下大了采纳,获得10
20秒前
xa完成签到,获得积分10
20秒前
kasdf完成签到,获得积分10
21秒前
卓水绿发布了新的文献求助10
21秒前
kls完成签到,获得积分10
24秒前
Dina完成签到,获得积分10
24秒前
文静千凡发布了新的文献求助10
24秒前
Lchemistry发布了新的文献求助10
25秒前
jenningseastera应助风飞采纳,获得20
26秒前
Owen应助aabb采纳,获得30
27秒前
共享精神应助洋洋采纳,获得10
28秒前
大个应助嘟嘟嘟嘟采纳,获得10
28秒前
29秒前
Rondab应助辛勤太阳采纳,获得10
29秒前
RRhhh完成签到,获得积分10
30秒前
卓水绿完成签到,获得积分10
30秒前
31秒前
33秒前
zlf完成签到,获得积分10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952525
求助须知:如何正确求助?哪些是违规求助? 3497889
关于积分的说明 11089301
捐赠科研通 3228428
什么是DOI,文献DOI怎么找? 1784906
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309