Fuzzy-ViT: A Deep Neuro-Fuzzy System for Cross-Domain Transfer Learning from Large-scale General Data to Medical Image

人工智能 计算机科学 神经模糊 深度学习 模糊逻辑 比例(比率) 学习迁移 领域(数学分析) 模式识别(心理学) 模糊控制系统 机器学习 数学 数学分析 物理 量子力学
作者
Qiankun Li,Yimou Wang,Yani Zhang,Zhihong Zuo,Junxin Chen,Wei Wang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tfuzz.2024.3400861
摘要

The surge in visual general big data has notably advanced data-driven deep learning-based computer vision technologies. Transformer-based methods shine in this era of big data because of their attention mechanism architecture and demand for massive data. However, the difficulty of obtaining medical images has caused the field to continue facing the limited-data challenge. In this paper, we propose a novel deep neuro-fuzzy system named Fuzzy-ViT, which synergistically integrates fuzzy logic with the Vision Transformer (ViT) for cross-domain transfer learning from large-scale general data to medical image domain. Specifically, Fuzzy-ViT utilizes a ViT backbone pre-trained on extensive general datasets such as ImageNet-21K, LAION-400M, and LAION-2B to extract rich general features. Then, a Fuzzy Attention Cross-Domain Module (FACM) is presented to transfer general features to medical features, thereby enhancing the medical image analysis. Thanks to the Fuzzy System Transitioner (FST) in FACM, fuzzy and uninterpretable general domain features can be effectively converted into those needed in the medical domain. In addition, the Attention Mechanism Smoother (AMS) in FACM smoothes the conversion outcomes, ensuring a harmonious integration of the fuzzy system with the neural network architecture. Experimental results demonstrate that the proposed Fuzzy-ViT achieves state-of-the-art and satisfactory performance on popular medical image benchmarks (BreakHis and HCRF) with 93.37% and 97.22% F1 scores. Detailed ablation analysis demonstrates that the effectiveness of our method for bridging large general visual and medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LL发布了新的文献求助10
1秒前
好心情发布了新的文献求助10
2秒前
2秒前
隐形曼青应助文献查找采纳,获得10
2秒前
善良安梦发布了新的文献求助10
3秒前
淀粉肠发布了新的文献求助10
3秒前
笨笨紫霜完成签到,获得积分10
3秒前
3秒前
大模型应助文艺的青旋采纳,获得10
4秒前
4秒前
strelias发布了新的文献求助10
4秒前
5秒前
俊逸寄灵完成签到,获得积分10
5秒前
6秒前
烟花应助唠叨的凡采纳,获得10
7秒前
静一完成签到,获得积分10
7秒前
欣喜的广山完成签到,获得积分10
8秒前
今后应助实验的兔纸采纳,获得10
8秒前
8秒前
wang发布了新的文献求助10
8秒前
Dingyiren完成签到,获得积分10
8秒前
隐形曼青应助灵巧的白昼采纳,获得10
9秒前
深情安青应助可爱的愚志采纳,获得10
10秒前
完美世界应助dong采纳,获得10
11秒前
13秒前
丘比特应助拓小八采纳,获得10
14秒前
15秒前
ZZZ发布了新的文献求助10
15秒前
科研通AI2S应助圆彰七大采纳,获得10
17秒前
222完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
20秒前
20秒前
走四方应助虚心十三采纳,获得10
20秒前
20秒前
大模型应助sss采纳,获得10
20秒前
科研通AI2S应助活力成败采纳,获得10
21秒前
诚心太君完成签到,获得积分10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135273
求助须知:如何正确求助?哪些是违规求助? 2786262
关于积分的说明 7776475
捐赠科研通 2442202
什么是DOI,文献DOI怎么找? 1298495
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847