计算机科学
功能连接
人工智能
功能磁共振成像
订单(交换)
神经生理学
模式识别(心理学)
计算机视觉
神经科学
心理学
财务
经济
作者
Yingzhi Teng,Kai Wu,Jing Liu,Yifan Li,Xiangyi Teng
出处
期刊:IEEE Transactions on Medical Imaging
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3412399
摘要
Conducting functional connectivity analysis on functional magnetic resonance imaging (fMRI) data presents a significant and intricate challenge. Contemporary studies typically analyze fMRI data by constructing high-order functional connectivity networks (FCNs) due to their strong interpretability. However, these approaches often overlook temporal information, resulting in suboptimal accuracy. Temporal information plays a vital role in reflecting changes in blood oxygenation level-dependent signals. To address this shortcoming, we have devised a framework for extracting temporal dependencies from fMRI data and inferring high-order functional connectivity among regions of interest (ROIs). Our approach postulates that the current state can be determined by the FCN and the state at the previous time, effectively capturing temporal dependencies. Furthermore, we enhance FCN by incorporating high-order features through hypergraph-based manifold regularization. Our algorithm involves causal modeling of the dynamic brain system, and the obtained directed FC reveals differences in the flow of information under different pattern. We have validated the significance of integrating temporal information into FCN using four real-world fMRI datasets. On average, our framework achieves 12% higher accuracy than non-temporal hypergraph-based and low-order FCNs, all while maintaining a short processing time. Notably, our framework successfully identifies the most discriminative ROIs, aligning with previous research, thereby facilitating cognitive and behavioral studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI