Constructing High-order Functional Connectivity Networks with Temporal Information from fMRI Data

计算机科学 功能连接 人工智能 功能磁共振成像 订单(交换) 神经生理学 模式识别(心理学) 计算机视觉 神经科学 心理学 财务 经济
作者
Yingzhi Teng,Kai Wu,Jing Liu,Yifan Li,Xiangyi Teng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3412399
摘要

Conducting functional connectivity analysis on functional magnetic resonance imaging (fMRI) data presents a significant and intricate challenge. Contemporary studies typically analyze fMRI data by constructing high-order functional connectivity networks (FCNs) due to their strong interpretability. However, these approaches often overlook temporal information, resulting in suboptimal accuracy. Temporal information plays a vital role in reflecting changes in blood oxygenation level-dependent signals. To address this shortcoming, we have devised a framework for extracting temporal dependencies from fMRI data and inferring high-order functional connectivity among regions of interest (ROIs). Our approach postulates that the current state can be determined by the FCN and the state at the previous time, effectively capturing temporal dependencies. Furthermore, we enhance FCN by incorporating high-order features through hypergraph-based manifold regularization. Our algorithm involves causal modeling of the dynamic brain system, and the obtained directed FC reveals differences in the flow of information under different pattern. We have validated the significance of integrating temporal information into FCN using four real-world fMRI datasets. On average, our framework achieves 12% higher accuracy than non-temporal hypergraph-based and low-order FCNs, all while maintaining a short processing time. Notably, our framework successfully identifies the most discriminative ROIs, aligning with previous research, thereby facilitating cognitive and behavioral studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈永伟发布了新的文献求助10
刚刚
共享精神应助Revovler采纳,获得10
刚刚
2Cd完成签到,获得积分10
1秒前
感动归尘应助彪壮的绮烟采纳,获得10
3秒前
3秒前
3秒前
4秒前
JamesPei应助keyandog采纳,获得10
4秒前
chen1976完成签到,获得积分20
4秒前
Singularity发布了新的文献求助10
4秒前
隐形曼青应助TO采纳,获得10
5秒前
xiaodan发布了新的文献求助20
6秒前
zt完成签到,获得积分10
6秒前
laciry完成签到,获得积分10
7秒前
7秒前
pluto应助zhangsudi采纳,获得10
7秒前
领导范儿应助ma采纳,获得10
7秒前
8秒前
chen1976发布了新的文献求助30
8秒前
yulong发布了新的文献求助10
8秒前
8秒前
8秒前
科研通AI2S应助FYJY采纳,获得10
8秒前
9秒前
不配.应助滕擎采纳,获得20
10秒前
金子完成签到,获得积分10
10秒前
11秒前
yalan完成签到,获得积分10
11秒前
Revovler发布了新的文献求助10
12秒前
润加油啊发布了新的文献求助10
12秒前
12秒前
不配.应助君君采纳,获得20
12秒前
KBYer发布了新的文献求助20
13秒前
13秒前
14秒前
下雨不愁的班班完成签到,获得积分20
14秒前
阿雪发布了新的文献求助10
14秒前
wwww完成签到 ,获得积分10
15秒前
游雨涵发布了新的文献求助10
15秒前
胜东完成签到,获得积分20
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240351
求助须知:如何正确求助?哪些是违规求助? 2885235
关于积分的说明 8237658
捐赠科研通 2553553
什么是DOI,文献DOI怎么找? 1381716
科研通“疑难数据库(出版商)”最低求助积分说明 649325
邀请新用户注册赠送积分活动 625009