已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Constructing High-order Functional Connectivity Networks with Temporal Information from fMRI Data

计算机科学 功能连接 人工智能 功能磁共振成像 订单(交换) 神经生理学 模式识别(心理学) 计算机视觉 神经科学 心理学 财务 经济
作者
Yingzhi Teng,Kai Wu,Jing Liu,Yifan Li,Xiangyi Teng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3412399
摘要

Conducting functional connectivity analysis on functional magnetic resonance imaging (fMRI) data presents a significant and intricate challenge. Contemporary studies typically analyze fMRI data by constructing high-order functional connectivity networks (FCNs) due to their strong interpretability. However, these approaches often overlook temporal information, resulting in suboptimal accuracy. Temporal information plays a vital role in reflecting changes in blood oxygenation level-dependent signals. To address this shortcoming, we have devised a framework for extracting temporal dependencies from fMRI data and inferring high-order functional connectivity among regions of interest (ROIs). Our approach postulates that the current state can be determined by the FCN and the state at the previous time, effectively capturing temporal dependencies. Furthermore, we enhance FCN by incorporating high-order features through hypergraph-based manifold regularization. Our algorithm involves causal modeling of the dynamic brain system, and the obtained directed FC reveals differences in the flow of information under different pattern. We have validated the significance of integrating temporal information into FCN using four real-world fMRI datasets. On average, our framework achieves 12% higher accuracy than non-temporal hypergraph-based and low-order FCNs, all while maintaining a short processing time. Notably, our framework successfully identifies the most discriminative ROIs, aligning with previous research, thereby facilitating cognitive and behavioral studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
就看最后一篇完成签到 ,获得积分10
3秒前
雾见春完成签到 ,获得积分10
3秒前
DAYAN发布了新的文献求助10
5秒前
123完成签到 ,获得积分10
5秒前
共享精神应助ESLG采纳,获得10
5秒前
swh发布了新的文献求助10
7秒前
灰灰完成签到,获得积分10
8秒前
和谐板栗完成签到 ,获得积分10
9秒前
WEILAI完成签到 ,获得积分10
9秒前
9秒前
星海梦幻完成签到 ,获得积分10
10秒前
13秒前
zhangsfdfgldf完成签到,获得积分10
13秒前
赘婿应助卢戴钧采纳,获得10
13秒前
14秒前
swh完成签到,获得积分10
14秒前
追忆完成签到,获得积分10
17秒前
upcdelx发布了新的文献求助100
17秒前
17秒前
江南之南完成签到 ,获得积分10
18秒前
wisher完成签到 ,获得积分10
18秒前
达八八八发布了新的文献求助10
21秒前
21秒前
优雅柏柳发布了新的文献求助10
22秒前
22秒前
rodrisk完成签到 ,获得积分10
23秒前
chenjzhuc完成签到,获得积分10
23秒前
Sulin完成签到 ,获得积分10
24秒前
脑洞疼应助DAYAN采纳,获得10
24秒前
稀里糊涂完成签到 ,获得积分10
25秒前
IceShock完成签到,获得积分10
27秒前
尹静涵完成签到 ,获得积分10
28秒前
ESLG发布了新的文献求助10
28秒前
29秒前
29秒前
30秒前
30秒前
852应助科研通管家采纳,获得10
30秒前
米米完成签到,获得积分10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956932
求助须知:如何正确求助?哪些是违规求助? 3502968
关于积分的说明 11110867
捐赠科研通 3233954
什么是DOI,文献DOI怎么找? 1787676
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802223