Constructing High-order Functional Connectivity Networks with Temporal Information from fMRI Data

计算机科学 功能连接 人工智能 功能磁共振成像 订单(交换) 神经生理学 模式识别(心理学) 计算机视觉 神经科学 心理学 财务 经济
作者
Yingzhi Teng,Kai Wu,Jing Liu,Yifan Li,Xiangyi Teng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3412399
摘要

Conducting functional connectivity analysis on functional magnetic resonance imaging (fMRI) data presents a significant and intricate challenge. Contemporary studies typically analyze fMRI data by constructing high-order functional connectivity networks (FCNs) due to their strong interpretability. However, these approaches often overlook temporal information, resulting in suboptimal accuracy. Temporal information plays a vital role in reflecting changes in blood oxygenation level-dependent signals. To address this shortcoming, we have devised a framework for extracting temporal dependencies from fMRI data and inferring high-order functional connectivity among regions of interest (ROIs). Our approach postulates that the current state can be determined by the FCN and the state at the previous time, effectively capturing temporal dependencies. Furthermore, we enhance FCN by incorporating high-order features through hypergraph-based manifold regularization. Our algorithm involves causal modeling of the dynamic brain system, and the obtained directed FC reveals differences in the flow of information under different pattern. We have validated the significance of integrating temporal information into FCN using four real-world fMRI datasets. On average, our framework achieves 12% higher accuracy than non-temporal hypergraph-based and low-order FCNs, all while maintaining a short processing time. Notably, our framework successfully identifies the most discriminative ROIs, aligning with previous research, thereby facilitating cognitive and behavioral studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
柴火烧叽完成签到,获得积分10
1秒前
田様应助小罗飞飞飞采纳,获得10
1秒前
佛系完成签到 ,获得积分10
1秒前
1秒前
丫丫完成签到,获得积分10
1秒前
bkagyin应助凤凰山采纳,获得10
2秒前
星星发布了新的文献求助10
3秒前
4秒前
义气大象完成签到,获得积分10
4秒前
大方嵩发布了新的文献求助10
4秒前
Cacilhas完成签到 ,获得积分10
4秒前
0000发布了新的文献求助30
4秒前
豆子发布了新的文献求助10
4秒前
Jenny应助木野狐采纳,获得10
4秒前
Khr1stINK发布了新的文献求助10
5秒前
牛牛完成签到,获得积分10
6秒前
6秒前
6秒前
li完成签到,获得积分10
6秒前
无花果应助发嗲的忆寒采纳,获得30
6秒前
xiaotudou95应助excellent_shit采纳,获得10
7秒前
btcat完成签到,获得积分10
7秒前
小蘑菇应助搬砖道人采纳,获得10
8秒前
思源应助校长采纳,获得10
8秒前
鸣隐完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
11秒前
11秒前
科研通AI5应助yx采纳,获得10
11秒前
12秒前
hym完成签到,获得积分10
12秒前
马静雨关注了科研通微信公众号
12秒前
111222完成签到,获得积分20
12秒前
13秒前
13秒前
三卡车安排你完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794