Enhanced Curve Perception in Lane Detection via Adaptive Guided Techniques

计算机科学 感知 电子工程 工程类 心理学 神经科学
作者
Yunzuo Zhang,Yuxin Zheng,Cunyu Wu,Tian Zhang
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tvt.2024.3408162
摘要

Lane detection is the prominent perception task for both self-driving and advanced driver assistant system. Recently, lane detection methods based on anchors have received increasing attention, but fixed shape anchors are difficult to model complex lane line shapes. To solve this problem, we propose an Enhanced Curve Perception Network (ECPNet) to detect the shapes of lane lines more flexibly and accurately. Specifically, we propose a Layer-by-layer Context Fusion Module (LCFM) to fully utilize both high-level and low-level features in lane detection, which can simultaneously obtain the global spatial structure relations and the local accurate positioning details. The module includes short hop connections within the initial layer and between feature layers of different scales. More importantly, we propose a novel Structural Correction Prediction Module (SCPM), which enhances the model's detection capability on curved structured lanes by assisting model selection anchor classification mode through adaptive guided techniques. In addition, we design a branch network and construct a Cross-channel Attention Mechanism (CAM) to realize self-information attention, which further enhances the detection accuracy. Experiments on the two most representative datasets demonstrate that the proposed method achieves state-of-the-art performance in a variety of environments, especially in curvy lanes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助慈祥的绿蓉采纳,获得10
刚刚
1秒前
1秒前
烂漫寄松完成签到,获得积分10
1秒前
星辰大海应助科研小趴菜采纳,获得30
1秒前
隐形曼青应助max采纳,获得10
3秒前
聂青枫完成签到,获得积分10
3秒前
Qiangde Liu完成签到,获得积分10
3秒前
三水发布了新的文献求助10
3秒前
4秒前
5秒前
12数据库完成签到,获得积分10
5秒前
可爱的函函应助phentjn采纳,获得10
6秒前
starying发布了新的文献求助10
6秒前
淡淡的小蜜蜂完成签到,获得积分10
7秒前
依依发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
kk发布了新的文献求助10
9秒前
sj冲啊发布了新的文献求助10
10秒前
科研通AI5应助十一采纳,获得10
11秒前
槛外土馒头完成签到,获得积分10
11秒前
杨树发布了新的文献求助10
11秒前
11秒前
积极问晴应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
积极问晴应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
nickZ应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
12秒前
香蕉觅云应助kk采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
12秒前
lier应助科研通管家采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515227
求助须知:如何正确求助?哪些是违规求助? 3097638
关于积分的说明 9236245
捐赠科研通 2792536
什么是DOI,文献DOI怎么找? 1532575
邀请新用户注册赠送积分活动 712185
科研通“疑难数据库(出版商)”最低求助积分说明 707160