电解质
动力学
电荷(物理)
接口(物质)
离子
传输(计算)
计算机科学
材料科学
化学
物理化学
电极
物理
并行计算
有机化学
量子力学
气泡
最大气泡压力法
作者
Joakim Halldin Stenlid,Pjotrs A. Žguns,Daniele Vivona,Abhishek Aggarwal,Kiarash Gordiz,Yirui Zhang,Shakul Pathak,Martin Z. Bazant,Yang Shao‐Horn,Artem Baskin,John W. Lawson
标识
DOI:10.26434/chemrxiv-2024-hh33z
摘要
Interface engineering remains a largely underexplored area and yet it holds the keys to high performance Li-ion batteries. It is the charge transfer across electrode-electrolyte interfaces, its inefficient energetics and sluggish kinetics that are oftentimes significant obstacles for achieving fast charging and high power regimes without compromising battery lifespan. This work propose a Boltzmann-averaged first principles workflow based on constant potential and constrained density functional theory for estimation of atomic scale factors influencing coupled ion-electron charge transfer kinetics across battery electrode-electrolyte interfaces. The approach estimates diabatic Li+ interface energy landscapes as function of the interface character and operational conditions, needed to simulate charging/discharging currents. Experimental trends for the LixCoO2 (0.5≤x≤1.0) electrode in varied organic electrolytes with LiPF6 and LiClO4 salts are reproduced, identifying Li+ transfer energy and Li+ adsorption energy as decisive factors influencing the enhanced kinetics in LiClO4-based electrolytes over LiPF6, rationalized by a stronger surface interaction of ClO4-.
科研通智能强力驱动
Strongly Powered by AbleSci AI