清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A new mobile diagnosis system for estimation of crop disease severity using deep transfer learning

生物 作物 学习迁移 深度学习 估计 人工智能 农业工程 农学 计算机科学 系统工程 工程类
作者
Mengji Yang,Aicha Sekhari,Lijuan Ren,Yu He,Xi Yu,Yacine Ouzrout
出处
期刊:Crop Protection [Elsevier]
卷期号:: 106776-106776
标识
DOI:10.1016/j.cropro.2024.106776
摘要

Crop diseases pose as a major threat to global food security. Minimizing disease-induced damage during crop growth and optimizing crop yields are vital for agricultural sustainability. Therefore, advanced disease detection and prevention of such diseases are crucial and the detection must be prompt and efficient as it is essential for the implementation of appropriate control measures. In this work, a parallel deep learning framework based on deep feature fusion is developed to precisely identify the severity of crop diseases. The framework utilizes ResNet50 and Xception as separate branches for feature extraction. Convolutional layer weights are initialized through transfer learning techniques employing models pre-trained on the ImageNet dataset. A fine-tuning strategy is employed for the optimization of convolutional layers and the design of the top layer. This framework achieves an accuracy of 88.58% on the AI Challenger 2018 dataset, marking an enhancement of 2.8% and 13% over other influential deep learning models, and it also outperforms some recent works. Likewise, the framework exhibits a recognition accuracy of 99.53% on the PlantVillage dataset. Moreover, an Android-based application is developed to diagnose the severity of crop diseases in real-time. The diagnostic system swiftly procures results and provides control recommendations through the capture and upload of images to the platform. The advanced severity detection system reduces the expertise required from users, facilitating precise prevention and control measures whilst focusing on accessibility. This work aims to provide innovative approaches and solutions for disease detection in the agricultural field, utilizing artificial intelligence to enhance agricultural informatization and creating more sustainable farming methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
cjh完成签到,获得积分20
8秒前
10秒前
zzz发布了新的文献求助10
14秒前
VPN不好用完成签到,获得积分10
15秒前
21秒前
38秒前
huanghe完成签到,获得积分10
39秒前
41秒前
1分钟前
烂漫的蜡烛完成签到 ,获得积分10
1分钟前
ww完成签到,获得积分10
1分钟前
1分钟前
1分钟前
焚心结完成签到 ,获得积分0
2分钟前
2分钟前
creep2020完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Polymer72应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Polymer72应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
可夫司机完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
Polymer72应助科研通管家采纳,获得10
4分钟前
Polymer72应助科研通管家采纳,获得10
4分钟前
Polymer72应助科研通管家采纳,获得10
4分钟前
雷雷完成签到,获得积分10
4分钟前
Costing完成签到 ,获得积分10
4分钟前
上山打老虎完成签到,获得积分10
4分钟前
5分钟前
刘龙波完成签到 ,获得积分10
5分钟前
江枫完成签到 ,获得积分10
6分钟前
Polymer72应助科研通管家采纳,获得10
6分钟前
龙猫爱看书完成签到,获得积分10
6分钟前
6分钟前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344201
求助须知:如何正确求助?哪些是违规求助? 2971187
关于积分的说明 8646894
捐赠科研通 2651470
什么是DOI,文献DOI怎么找? 1451779
科研通“疑难数据库(出版商)”最低求助积分说明 672287
邀请新用户注册赠送积分活动 661790