U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation

人工智能 图像(数学) 分割 图像分割 计算机科学 计算机视觉 业务
作者
Chenxin Li,Xinyu Liu,Wuyang Li,Cheng Wang,Han-Wen Liu,Yixuan Yuan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.02918
摘要

U-Net has become a cornerstone in various visual applications such as image segmentation and diffusion probability models. While numerous innovative designs and improvements have been introduced by incorporating transformers or MLPs, the networks are still limited to linearly modeling patterns as well as the deficient interpretability. To address these challenges, our intuition is inspired by the impressive results of the Kolmogorov-Arnold Networks (KANs) in terms of accuracy and interpretability, which reshape the neural network learning via the stack of non-linear learnable activation functions derived from the Kolmogorov-Anold representation theorem. Specifically, in this paper, we explore the untapped potential of KANs in improving backbones for vision tasks. We investigate, modify and re-design the established U-Net pipeline by integrating the dedicated KAN layers on the tokenized intermediate representation, termed U-KAN. Rigorous medical image segmentation benchmarks verify the superiority of U-KAN by higher accuracy even with less computation cost. We further delved into the potential of U-KAN as an alternative U-Net noise predictor in diffusion models, demonstrating its applicability in generating task-oriented model architectures. These endeavours unveil valuable insights and sheds light on the prospect that with U-KAN, you can make strong backbone for medical image segmentation and generation. Project page: https://yes-ukan.github.io/
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小青椒应助yongon采纳,获得30
刚刚
Criminology34应助郗文佳采纳,获得10
2秒前
5秒前
慕青应助able采纳,获得10
5秒前
yang发布了新的文献求助10
6秒前
陆小果发布了新的文献求助30
6秒前
无名的人完成签到 ,获得积分10
6秒前
狂野白梅发布了新的文献求助10
10秒前
11秒前
12秒前
wlx发布了新的文献求助10
12秒前
明若清完成签到,获得积分10
13秒前
嘎嘎的小羊完成签到,获得积分20
13秒前
Hello应助wlei采纳,获得10
13秒前
夏大雨发布了新的文献求助10
13秒前
pie应助yizhi猫采纳,获得10
14秒前
15秒前
哇哇哇发布了新的文献求助10
16秒前
17秒前
saf0852完成签到,获得积分10
17秒前
plant发布了新的文献求助10
18秒前
20秒前
zhouzhou完成签到,获得积分10
21秒前
21秒前
夏大雨完成签到,获得积分10
23秒前
苇一完成签到,获得积分10
23秒前
77发布了新的文献求助10
24秒前
25秒前
大模型应助科研通管家采纳,获得10
25秒前
英俊的铭应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
ccm应助科研通管家采纳,获得10
25秒前
所所应助科研通管家采纳,获得10
25秒前
xxfsx应助科研通管家采纳,获得10
26秒前
xxfsx应助科研通管家采纳,获得10
26秒前
英姑应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
思源应助科研通管家采纳,获得10
26秒前
上官若男应助科研通管家采纳,获得10
26秒前
wanci应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288530
求助须知:如何正确求助?哪些是违规求助? 4440409
关于积分的说明 13824512
捐赠科研通 4322629
什么是DOI,文献DOI怎么找? 2372687
邀请新用户注册赠送积分活动 1368119
关于科研通互助平台的介绍 1331979