U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation

人工智能 图像(数学) 分割 图像分割 计算机科学 计算机视觉 业务
作者
Chenxin Li,Xinyu Liu,Wuyang Li,Cheng Wang,Han-Wen Liu,Yixuan Yuan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.02918
摘要

U-Net has become a cornerstone in various visual applications such as image segmentation and diffusion probability models. While numerous innovative designs and improvements have been introduced by incorporating transformers or MLPs, the networks are still limited to linearly modeling patterns as well as the deficient interpretability. To address these challenges, our intuition is inspired by the impressive results of the Kolmogorov-Arnold Networks (KANs) in terms of accuracy and interpretability, which reshape the neural network learning via the stack of non-linear learnable activation functions derived from the Kolmogorov-Anold representation theorem. Specifically, in this paper, we explore the untapped potential of KANs in improving backbones for vision tasks. We investigate, modify and re-design the established U-Net pipeline by integrating the dedicated KAN layers on the tokenized intermediate representation, termed U-KAN. Rigorous medical image segmentation benchmarks verify the superiority of U-KAN by higher accuracy even with less computation cost. We further delved into the potential of U-KAN as an alternative U-Net noise predictor in diffusion models, demonstrating its applicability in generating task-oriented model architectures. These endeavours unveil valuable insights and sheds light on the prospect that with U-KAN, you can make strong backbone for medical image segmentation and generation. Project page: https://yes-ukan.github.io/

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如意二娘完成签到 ,获得积分10
刚刚
企鹅大王发布了新的文献求助10
刚刚
chuzihang发布了新的文献求助10
1秒前
zzz发布了新的文献求助10
1秒前
科研通AI6应助cherry采纳,获得10
1秒前
1秒前
勤劳傲安完成签到,获得积分10
2秒前
2秒前
Feng YIYI发布了新的文献求助10
3秒前
风中冰蝶完成签到,获得积分10
4秒前
小蘑菇应助专注的惜文采纳,获得10
4秒前
5秒前
王留勇完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
慕青应助的能用纸采纳,获得30
7秒前
希望天下0贩的0应助qingxuan采纳,获得10
7秒前
7秒前
科研通AI2S应助云山枫叶采纳,获得10
8秒前
egg发布了新的文献求助10
8秒前
8秒前
8秒前
zbclzf完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
空白格完成签到 ,获得积分10
9秒前
10秒前
10秒前
萂昕完成签到 ,获得积分10
10秒前
lw完成签到,获得积分10
11秒前
小九九发布了新的文献求助10
11秒前
阴香萍发布了新的文献求助10
11秒前
jade完成签到,获得积分10
11秒前
天天向上完成签到,获得积分10
11秒前
12秒前
Qiao发布了新的文献求助10
12秒前
SPULY完成签到,获得积分10
13秒前
徐磊完成签到,获得积分10
13秒前
13秒前
蓝胖子发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652526
求助须知:如何正确求助?哪些是违规求助? 4787640
关于积分的说明 15060403
捐赠科研通 4811049
什么是DOI,文献DOI怎么找? 2573602
邀请新用户注册赠送积分活动 1529411
关于科研通互助平台的介绍 1488273