U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation

人工智能 图像(数学) 分割 图像分割 计算机科学 计算机视觉 业务
作者
Chenxin Li,Xinyu Liu,Wuyang Li,Cheng Wang,Han-Wen Liu,Yixuan Yuan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.02918
摘要

U-Net has become a cornerstone in various visual applications such as image segmentation and diffusion probability models. While numerous innovative designs and improvements have been introduced by incorporating transformers or MLPs, the networks are still limited to linearly modeling patterns as well as the deficient interpretability. To address these challenges, our intuition is inspired by the impressive results of the Kolmogorov-Arnold Networks (KANs) in terms of accuracy and interpretability, which reshape the neural network learning via the stack of non-linear learnable activation functions derived from the Kolmogorov-Anold representation theorem. Specifically, in this paper, we explore the untapped potential of KANs in improving backbones for vision tasks. We investigate, modify and re-design the established U-Net pipeline by integrating the dedicated KAN layers on the tokenized intermediate representation, termed U-KAN. Rigorous medical image segmentation benchmarks verify the superiority of U-KAN by higher accuracy even with less computation cost. We further delved into the potential of U-KAN as an alternative U-Net noise predictor in diffusion models, demonstrating its applicability in generating task-oriented model architectures. These endeavours unveil valuable insights and sheds light on the prospect that with U-KAN, you can make strong backbone for medical image segmentation and generation. Project page: https://yes-ukan.github.io/

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助02采纳,获得10
1秒前
1秒前
Zhong完成签到,获得积分10
1秒前
2秒前
Gary发布了新的文献求助10
2秒前
nhocbinzuzu发布了新的文献求助10
2秒前
bkagyin应助玛卡巴卡采纳,获得10
2秒前
反杀闰土的猹完成签到,获得积分10
2秒前
2秒前
3秒前
真实的幻翠完成签到,获得积分20
3秒前
糖老鸭完成签到,获得积分10
3秒前
3秒前
3秒前
fcyyc完成签到,获得积分10
3秒前
vivre223发布了新的文献求助10
3秒前
4秒前
为不争完成签到,获得积分10
4秒前
nihao发布了新的文献求助10
4秒前
贪玩的咪咪完成签到,获得积分10
5秒前
觉皇发布了新的文献求助10
5秒前
完美世界应助独特天问采纳,获得10
5秒前
5秒前
炙热笑旋完成签到,获得积分10
5秒前
华百川发布了新的文献求助10
5秒前
6秒前
IceyCNZ完成签到,获得积分10
7秒前
fcyyc发布了新的文献求助10
7秒前
tianmafei发布了新的文献求助10
8秒前
隐形曼青应助淡然天问采纳,获得10
8秒前
123发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
小蘑菇应助nhocbinzuzu采纳,获得10
9秒前
ding应助刺槐采纳,获得10
9秒前
李金奥发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731