U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation

人工智能 图像(数学) 分割 图像分割 计算机科学 计算机视觉 业务
作者
Chenxin Li,Xinyu Liu,Wuyang Li,Cheng Wang,Han-Wen Liu,Yixuan Yuan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.02918
摘要

U-Net has become a cornerstone in various visual applications such as image segmentation and diffusion probability models. While numerous innovative designs and improvements have been introduced by incorporating transformers or MLPs, the networks are still limited to linearly modeling patterns as well as the deficient interpretability. To address these challenges, our intuition is inspired by the impressive results of the Kolmogorov-Arnold Networks (KANs) in terms of accuracy and interpretability, which reshape the neural network learning via the stack of non-linear learnable activation functions derived from the Kolmogorov-Anold representation theorem. Specifically, in this paper, we explore the untapped potential of KANs in improving backbones for vision tasks. We investigate, modify and re-design the established U-Net pipeline by integrating the dedicated KAN layers on the tokenized intermediate representation, termed U-KAN. Rigorous medical image segmentation benchmarks verify the superiority of U-KAN by higher accuracy even with less computation cost. We further delved into the potential of U-KAN as an alternative U-Net noise predictor in diffusion models, demonstrating its applicability in generating task-oriented model architectures. These endeavours unveil valuable insights and sheds light on the prospect that with U-KAN, you can make strong backbone for medical image segmentation and generation. Project page: https://yes-ukan.github.io/

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太微北完成签到,获得积分10
1秒前
liuyepiao关注了科研通微信公众号
1秒前
34101127完成签到 ,获得积分10
1秒前
4秒前
牛哥完成签到 ,获得积分10
4秒前
7秒前
中杯西瓜冰完成签到,获得积分10
8秒前
斯文败类应助moian2采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
仪式感完成签到,获得积分20
9秒前
情怀应助vidi采纳,获得10
10秒前
11秒前
852应助杨仔采纳,获得10
11秒前
12秒前
凉宫八月发布了新的文献求助10
12秒前
14秒前
YINGYAN应助wu采纳,获得20
15秒前
15秒前
戚小发布了新的文献求助10
16秒前
王丽娟应助李静静采纳,获得10
17秒前
18秒前
SJJ应助啵啵冰采纳,获得30
18秒前
优秀芷波完成签到 ,获得积分10
20秒前
老迟到的梦旋完成签到 ,获得积分10
21秒前
moian2发布了新的文献求助10
22秒前
情怀应助虎啊虎啊采纳,获得10
22秒前
22秒前
23秒前
彭于晏应助fufu采纳,获得10
24秒前
时不言完成签到 ,获得积分10
24秒前
orixero应助holly采纳,获得10
25秒前
夏夜完成签到 ,获得积分10
27秒前
apple红了完成签到 ,获得积分10
28秒前
泥豪泥嚎完成签到 ,获得积分10
28秒前
29秒前
Sylvia发布了新的文献求助10
29秒前
Vanessa完成签到 ,获得积分10
30秒前
drfang完成签到 ,获得积分10
30秒前
一只小锦鲤完成签到 ,获得积分10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744116
关于积分的说明 15000277
捐赠科研通 4796029
什么是DOI,文献DOI怎么找? 2562260
邀请新用户注册赠送积分活动 1521810
关于科研通互助平台的介绍 1481704