U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation

人工智能 图像(数学) 分割 图像分割 计算机科学 计算机视觉 业务
作者
Chenxin Li,Xinyu Liu,Wuyang Li,Cheng Wang,Han-Wen Liu,Yixuan Yuan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.02918
摘要

U-Net has become a cornerstone in various visual applications such as image segmentation and diffusion probability models. While numerous innovative designs and improvements have been introduced by incorporating transformers or MLPs, the networks are still limited to linearly modeling patterns as well as the deficient interpretability. To address these challenges, our intuition is inspired by the impressive results of the Kolmogorov-Arnold Networks (KANs) in terms of accuracy and interpretability, which reshape the neural network learning via the stack of non-linear learnable activation functions derived from the Kolmogorov-Anold representation theorem. Specifically, in this paper, we explore the untapped potential of KANs in improving backbones for vision tasks. We investigate, modify and re-design the established U-Net pipeline by integrating the dedicated KAN layers on the tokenized intermediate representation, termed U-KAN. Rigorous medical image segmentation benchmarks verify the superiority of U-KAN by higher accuracy even with less computation cost. We further delved into the potential of U-KAN as an alternative U-Net noise predictor in diffusion models, demonstrating its applicability in generating task-oriented model architectures. These endeavours unveil valuable insights and sheds light on the prospect that with U-KAN, you can make strong backbone for medical image segmentation and generation. Project page: https://yes-ukan.github.io/

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小狼狗很凶完成签到,获得积分10
刚刚
夜白发布了新的文献求助100
1秒前
longlong发布了新的文献求助10
1秒前
赘婿应助喵喵采纳,获得10
1秒前
蔓越莓完成签到 ,获得积分10
1秒前
lily完成签到,获得积分10
1秒前
小Z完成签到,获得积分10
2秒前
爱你沛沛完成签到 ,获得积分10
2秒前
瘦瘦冰凡完成签到,获得积分10
2秒前
WYang完成签到,获得积分10
3秒前
3秒前
北北发布了新的文献求助10
4秒前
LFH关闭了LFH文献求助
4秒前
4秒前
zxping完成签到,获得积分10
4秒前
5秒前
5秒前
zoushiyi完成签到,获得积分10
5秒前
5秒前
脑洞疼应助volition采纳,获得10
6秒前
英俊的铭应助dslhxwlkm采纳,获得10
6秒前
7秒前
7秒前
hhhhyyy应助陶醉的鹤轩采纳,获得10
7秒前
星辰大海应助dffd采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
xiaoming777发布了新的文献求助10
8秒前
清晨发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
Xiao_Fu发布了新的文献求助10
10秒前
cao发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
健壮豌豆完成签到,获得积分10
11秒前
12秒前
xingzhang完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721