AB1453 PYROPTOTIC GENES AS PREDICTORS OF BONE RESORPTION AND MINERALIZATION IN RHEUMATOID ARTHRITIS AND ANKYLOSING SPONDYLITIS

上睑下垂 强直性脊柱炎 骨重建 转录组 医学 类风湿性关节炎 骨吸收 炎症 免疫学 基因表达 生物 基因 内科学 炎症体 遗传学
作者
Zaixing Yang,Menggen Ma,Ying Liang,Yumei Wen,P. Zhang,Rong Huang
标识
DOI:10.1136/annrheumdis-2024-eular.805
摘要

Background:

Rheumatic diseases, such as rheumatoid arthritis (RA) and ankylosing spondylitis (AS), are marked by disrupted bone metabolism and chronic inflammation. Programmed cell death (PCD), such as ferroptosis, Cuproptosis and pyroptosis, has been reported to participate in various rheumatic diseases[1]. Pyroptosis, a crucial biological event, has been associated with bone metabolism in rheumatic diseases[2], yet the predictive value of pyroptosis in these conditions remains unclear.

Objectives:

To investigate the correlation between pyroptotic genes and bone metabolism in rheumatic immune diseases like RA and AS. Utilizing public datasets, RNA-seq, and ELISA assays, this study aims to assess the potential of pyroptotic genes as early indicators of bone damage, incorporating a novel machine learning approach. The findings are intended to support the advancement of precision medicine.

Methods:

Prior to the substantive study, we conducted an analysis of different PCD gene sets and bone mineralization/resorption gene sets across 3 public datasets (GSE15258, GSE25101, and GSE73754). In addition, we also used CIBERSORT and single-cell transcriptome sequencing to confirm the cell subpopulation distribution of pyroptotic gene expression. We then utilized RNA-seq to profile the whole-blood transcriptomes of RA and AS patients, as well as healthy volunteers to validate the inference from public data. Concomitantly, ELISA assays were used to evaluate pertinent bone metabolism markers. We further incorporated public datasets and made use of blending machine learning methods to investigate the correlation between pyroptotic gene expression and bone metabolism. The first layer of this blending machine learning model consists of XGBoost, Logistic, and LightGBM, and the second layer is a random forest model. The training set accounted for 85%, the verification set accounted for 15%, and the second layer model selected all samples as the test set.

Results:

Our investigation identifies a substantial correlation between pyroptotic gene expression (compared with Apoptosis, Ferroptosis, Autophagy, Necroptosis, Cuproptosis and Parthanatos) and bone metabolism in rheumatic diseases (Figure 1). The distribution of pyroptotic genes was mainly concentrated in macrophage subpopulation. Notably, the pyroptotic genes - TNF, IRF2, CASP8, PYCARD, and NLRC4 successfully predicted the bone resorption score in AS patients (Test set AUC: 0.871, Accuracy: 0.833, Figure 2B), however, fell short in predicting bone mineralization scores (Test set AUC: 0.586, Accuracy: 0.583, Figure 2C). For RA patients, however, these genes were good predictors of both bone resorption (Test set AUC: 0.908, Figure 2D) and bone mineralization scores (Test set AUC: 0.859, Figure 2E). Furthermore, we confirmed a certain correlation between pyroptotic-related gene expression and the ELISA test indicators(including calcium, phosphorus, OPG, RANKL and CTX-I) in our samples.

Conclusion:

By integrating RNA-seq profiling, ELISA assays, and blending machine learning analysis, our study emphasizes the complexity of the interplay between pyroptosis and bone metabolism in rheumatic diseases. The pyroptosis-related indicators we discovered allow for early prediction of bone metabolism in rheumatic diseases.

References:

[1] Zhao J, Jiang P, Guo S, Schrodi SJ, He D. Apoptosis, Autophagy, NETosis, Necroptosis, and Pyroptosis Mediated Programmed Cell Death as Targets for Innovative Therapy in Rheumatoid Arthritis. FRONT IMMUNOL. 2021 2021/1/20;12:809806. [2] Zhuang L, Luo X, Wu S, Lin Z, Zhang Y, Zhai Z, et al. Disulfiram alleviates pristane-induced lupus via inhibiting GSDMD-mediated pyroptosis. CELL DEATH DISCOV. 2022 2022/9/3;8(1):379.

Acknowledgements:

NIL.

Disclosure of Interests:

None declared.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
第1008个July完成签到 ,获得积分10
刚刚
小甲鱼发布了新的文献求助10
1秒前
1秒前
2秒前
所所应助许昊龙采纳,获得10
3秒前
3秒前
大模型应助sxy采纳,获得10
4秒前
4秒前
5秒前
5秒前
zhaxiao发布了新的文献求助10
5秒前
5秒前
xu完成签到 ,获得积分10
5秒前
6秒前
Hexagram发布了新的文献求助10
6秒前
哭泣海雪完成签到 ,获得积分10
6秒前
9秒前
孤独的一鸣应助sean采纳,获得10
9秒前
慕青应助pharmstudent采纳,获得30
10秒前
hu完成签到 ,获得积分10
10秒前
yosh发布了新的文献求助10
11秒前
鸭鸭发布了新的文献求助10
11秒前
wzy给wzy的求助进行了留言
14秒前
16秒前
Carlos发布了新的文献求助10
17秒前
善学以致用应助熊22采纳,获得10
18秒前
19秒前
李健应助Vizz采纳,获得10
19秒前
大个应助读文献的刘楠采纳,获得10
21秒前
科研通AI5应助JasperChan采纳,获得10
21秒前
脑洞疼应助一如果一采纳,获得10
21秒前
研友_rLmNXn发布了新的文献求助10
21秒前
英俊的铭应助土豆大魔王采纳,获得10
23秒前
啦啦啦完成签到,获得积分10
23秒前
taoliu发布了新的文献求助10
24秒前
CipherSage应助研友_rLmNXn采纳,获得10
24秒前
24秒前
25秒前
YamDaamCaa应助charles采纳,获得30
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524030
关于积分的说明 11219577
捐赠科研通 3261464
什么是DOI,文献DOI怎么找? 1800674
邀请新用户注册赠送积分活动 879241
科研通“疑难数据库(出版商)”最低求助积分说明 807226