AB1453 PYROPTOTIC GENES AS PREDICTORS OF BONE RESORPTION AND MINERALIZATION IN RHEUMATOID ARTHRITIS AND ANKYLOSING SPONDYLITIS

上睑下垂 强直性脊柱炎 骨重建 转录组 医学 类风湿性关节炎 骨吸收 炎症 免疫学 基因表达 生物 基因 内科学 炎症体 遗传学
作者
Zaixing Yang,Menggen Ma,Ying Liang,Yumei Wen,P. Zhang,Rong Huang
标识
DOI:10.1136/annrheumdis-2024-eular.805
摘要

Background:

Rheumatic diseases, such as rheumatoid arthritis (RA) and ankylosing spondylitis (AS), are marked by disrupted bone metabolism and chronic inflammation. Programmed cell death (PCD), such as ferroptosis, Cuproptosis and pyroptosis, has been reported to participate in various rheumatic diseases[1]. Pyroptosis, a crucial biological event, has been associated with bone metabolism in rheumatic diseases[2], yet the predictive value of pyroptosis in these conditions remains unclear.

Objectives:

To investigate the correlation between pyroptotic genes and bone metabolism in rheumatic immune diseases like RA and AS. Utilizing public datasets, RNA-seq, and ELISA assays, this study aims to assess the potential of pyroptotic genes as early indicators of bone damage, incorporating a novel machine learning approach. The findings are intended to support the advancement of precision medicine.

Methods:

Prior to the substantive study, we conducted an analysis of different PCD gene sets and bone mineralization/resorption gene sets across 3 public datasets (GSE15258, GSE25101, and GSE73754). In addition, we also used CIBERSORT and single-cell transcriptome sequencing to confirm the cell subpopulation distribution of pyroptotic gene expression. We then utilized RNA-seq to profile the whole-blood transcriptomes of RA and AS patients, as well as healthy volunteers to validate the inference from public data. Concomitantly, ELISA assays were used to evaluate pertinent bone metabolism markers. We further incorporated public datasets and made use of blending machine learning methods to investigate the correlation between pyroptotic gene expression and bone metabolism. The first layer of this blending machine learning model consists of XGBoost, Logistic, and LightGBM, and the second layer is a random forest model. The training set accounted for 85%, the verification set accounted for 15%, and the second layer model selected all samples as the test set.

Results:

Our investigation identifies a substantial correlation between pyroptotic gene expression (compared with Apoptosis, Ferroptosis, Autophagy, Necroptosis, Cuproptosis and Parthanatos) and bone metabolism in rheumatic diseases (Figure 1). The distribution of pyroptotic genes was mainly concentrated in macrophage subpopulation. Notably, the pyroptotic genes - TNF, IRF2, CASP8, PYCARD, and NLRC4 successfully predicted the bone resorption score in AS patients (Test set AUC: 0.871, Accuracy: 0.833, Figure 2B), however, fell short in predicting bone mineralization scores (Test set AUC: 0.586, Accuracy: 0.583, Figure 2C). For RA patients, however, these genes were good predictors of both bone resorption (Test set AUC: 0.908, Figure 2D) and bone mineralization scores (Test set AUC: 0.859, Figure 2E). Furthermore, we confirmed a certain correlation between pyroptotic-related gene expression and the ELISA test indicators(including calcium, phosphorus, OPG, RANKL and CTX-I) in our samples.

Conclusion:

By integrating RNA-seq profiling, ELISA assays, and blending machine learning analysis, our study emphasizes the complexity of the interplay between pyroptosis and bone metabolism in rheumatic diseases. The pyroptosis-related indicators we discovered allow for early prediction of bone metabolism in rheumatic diseases.

References:

[1] Zhao J, Jiang P, Guo S, Schrodi SJ, He D. Apoptosis, Autophagy, NETosis, Necroptosis, and Pyroptosis Mediated Programmed Cell Death as Targets for Innovative Therapy in Rheumatoid Arthritis. FRONT IMMUNOL. 2021 2021/1/20;12:809806. [2] Zhuang L, Luo X, Wu S, Lin Z, Zhang Y, Zhai Z, et al. Disulfiram alleviates pristane-induced lupus via inhibiting GSDMD-mediated pyroptosis. CELL DEATH DISCOV. 2022 2022/9/3;8(1):379.

Acknowledgements:

NIL.

Disclosure of Interests:

None declared.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼延秋白发布了新的文献求助10
刚刚
刚刚
探寻发布了新的文献求助10
1秒前
1秒前
1秒前
咪咪发布了新的文献求助10
2秒前
咩鹿酱完成签到,获得积分10
2秒前
酷酷的夏波关注了科研通微信公众号
2秒前
二二完成签到,获得积分10
2秒前
不安的半梦完成签到,获得积分10
2秒前
研友_VZG7GZ应助清脆的夜白采纳,获得10
3秒前
3秒前
Ava应助TaoJ采纳,获得10
5秒前
Jing发布了新的文献求助10
5秒前
瘦瘦一曲发布了新的文献求助10
5秒前
6秒前
wwy发布了新的文献求助10
6秒前
坦率如柏发布了新的文献求助10
6秒前
酷波er应助xm采纳,获得10
6秒前
科研通AI6应助chinbaor采纳,获得10
6秒前
sunshine完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
秋水完成签到,获得积分10
8秒前
lan发布了新的文献求助10
8秒前
8秒前
9秒前
dingth完成签到,获得积分10
9秒前
9秒前
小雨堂完成签到 ,获得积分10
10秒前
李嘉睿发布了新的文献求助10
10秒前
活泼的惜儿完成签到 ,获得积分10
10秒前
万能图书馆应助rs采纳,获得10
10秒前
11秒前
11秒前
11秒前
11秒前
12秒前
李浩然发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4988890
求助须知:如何正确求助?哪些是违规求助? 4238321
关于积分的说明 13202223
捐赠科研通 4032221
什么是DOI,文献DOI怎么找? 2206012
邀请新用户注册赠送积分活动 1217341
关于科研通互助平台的介绍 1135527