清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

AB1453 PYROPTOTIC GENES AS PREDICTORS OF BONE RESORPTION AND MINERALIZATION IN RHEUMATOID ARTHRITIS AND ANKYLOSING SPONDYLITIS

上睑下垂 强直性脊柱炎 骨重建 转录组 医学 类风湿性关节炎 骨吸收 炎症 免疫学 基因表达 生物 基因 内科学 炎症体 遗传学
作者
Zaixing Yang,Menggen Ma,Ying Liang,Yumei Wen,P. Zhang,Rong Huang
标识
DOI:10.1136/annrheumdis-2024-eular.805
摘要

Background:

Rheumatic diseases, such as rheumatoid arthritis (RA) and ankylosing spondylitis (AS), are marked by disrupted bone metabolism and chronic inflammation. Programmed cell death (PCD), such as ferroptosis, Cuproptosis and pyroptosis, has been reported to participate in various rheumatic diseases[1]. Pyroptosis, a crucial biological event, has been associated with bone metabolism in rheumatic diseases[2], yet the predictive value of pyroptosis in these conditions remains unclear.

Objectives:

To investigate the correlation between pyroptotic genes and bone metabolism in rheumatic immune diseases like RA and AS. Utilizing public datasets, RNA-seq, and ELISA assays, this study aims to assess the potential of pyroptotic genes as early indicators of bone damage, incorporating a novel machine learning approach. The findings are intended to support the advancement of precision medicine.

Methods:

Prior to the substantive study, we conducted an analysis of different PCD gene sets and bone mineralization/resorption gene sets across 3 public datasets (GSE15258, GSE25101, and GSE73754). In addition, we also used CIBERSORT and single-cell transcriptome sequencing to confirm the cell subpopulation distribution of pyroptotic gene expression. We then utilized RNA-seq to profile the whole-blood transcriptomes of RA and AS patients, as well as healthy volunteers to validate the inference from public data. Concomitantly, ELISA assays were used to evaluate pertinent bone metabolism markers. We further incorporated public datasets and made use of blending machine learning methods to investigate the correlation between pyroptotic gene expression and bone metabolism. The first layer of this blending machine learning model consists of XGBoost, Logistic, and LightGBM, and the second layer is a random forest model. The training set accounted for 85%, the verification set accounted for 15%, and the second layer model selected all samples as the test set.

Results:

Our investigation identifies a substantial correlation between pyroptotic gene expression (compared with Apoptosis, Ferroptosis, Autophagy, Necroptosis, Cuproptosis and Parthanatos) and bone metabolism in rheumatic diseases (Figure 1). The distribution of pyroptotic genes was mainly concentrated in macrophage subpopulation. Notably, the pyroptotic genes - TNF, IRF2, CASP8, PYCARD, and NLRC4 successfully predicted the bone resorption score in AS patients (Test set AUC: 0.871, Accuracy: 0.833, Figure 2B), however, fell short in predicting bone mineralization scores (Test set AUC: 0.586, Accuracy: 0.583, Figure 2C). For RA patients, however, these genes were good predictors of both bone resorption (Test set AUC: 0.908, Figure 2D) and bone mineralization scores (Test set AUC: 0.859, Figure 2E). Furthermore, we confirmed a certain correlation between pyroptotic-related gene expression and the ELISA test indicators(including calcium, phosphorus, OPG, RANKL and CTX-I) in our samples.

Conclusion:

By integrating RNA-seq profiling, ELISA assays, and blending machine learning analysis, our study emphasizes the complexity of the interplay between pyroptosis and bone metabolism in rheumatic diseases. The pyroptosis-related indicators we discovered allow for early prediction of bone metabolism in rheumatic diseases.

References:

[1] Zhao J, Jiang P, Guo S, Schrodi SJ, He D. Apoptosis, Autophagy, NETosis, Necroptosis, and Pyroptosis Mediated Programmed Cell Death as Targets for Innovative Therapy in Rheumatoid Arthritis. FRONT IMMUNOL. 2021 2021/1/20;12:809806. [2] Zhuang L, Luo X, Wu S, Lin Z, Zhang Y, Zhai Z, et al. Disulfiram alleviates pristane-induced lupus via inhibiting GSDMD-mediated pyroptosis. CELL DEATH DISCOV. 2022 2022/9/3;8(1):379.

Acknowledgements:

NIL.

Disclosure of Interests:

None declared.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sx666完成签到 ,获得积分10
16秒前
平凡世界完成签到 ,获得积分10
17秒前
zw完成签到,获得积分10
24秒前
贾舒涵完成签到,获得积分10
28秒前
愉快的丹彤完成签到 ,获得积分10
29秒前
29秒前
柯彦完成签到 ,获得积分10
30秒前
无极微光应助白华苍松采纳,获得20
32秒前
红茸茸羊完成签到 ,获得积分10
1分钟前
zhangwenjie完成签到 ,获得积分10
1分钟前
sanmochuan发布了新的文献求助10
1分钟前
火鸡味锅巴完成签到 ,获得积分10
1分钟前
吉祥高趙完成签到 ,获得积分10
1分钟前
蓝意完成签到,获得积分0
1分钟前
1分钟前
cwanglh完成签到 ,获得积分10
1分钟前
1分钟前
sanmochuan完成签到,获得积分10
1分钟前
陈A完成签到 ,获得积分10
1分钟前
2分钟前
kk发布了新的文献求助10
2分钟前
余慵慵完成签到 ,获得积分10
2分钟前
慕青应助无语的音响采纳,获得10
2分钟前
传奇3应助kk采纳,获得10
2分钟前
一鸣大人完成签到,获得积分10
2分钟前
xu完成签到 ,获得积分10
2分钟前
2分钟前
迷人冥完成签到 ,获得积分10
2分钟前
无极微光应助白华苍松采纳,获得20
2分钟前
Cleo应助foyefeng采纳,获得10
2分钟前
kk完成签到,获得积分10
2分钟前
woshiwuziq完成签到 ,获得积分10
2分钟前
达雨应助jouholly采纳,获得10
2分钟前
neversay4ever完成签到 ,获得积分10
2分钟前
张平一完成签到 ,获得积分10
2分钟前
张平一完成签到 ,获得积分10
2分钟前
2分钟前
alex12259完成签到 ,获得积分10
2分钟前
2分钟前
王吉萍完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555113
求助须知:如何正确求助?哪些是违规求助? 4639649
关于积分的说明 14656529
捐赠科研通 4581628
什么是DOI,文献DOI怎么找? 2512901
邀请新用户注册赠送积分活动 1487593
关于科研通互助平台的介绍 1458621