AB1453 PYROPTOTIC GENES AS PREDICTORS OF BONE RESORPTION AND MINERALIZATION IN RHEUMATOID ARTHRITIS AND ANKYLOSING SPONDYLITIS

上睑下垂 强直性脊柱炎 骨重建 转录组 医学 类风湿性关节炎 骨吸收 炎症 免疫学 基因表达 生物 基因 内科学 炎症体 遗传学
作者
Zaixing Yang,Menggen Ma,Ying Liang,Yumei Wen,P. Zhang,Rong Huang
标识
DOI:10.1136/annrheumdis-2024-eular.805
摘要

Background:

Rheumatic diseases, such as rheumatoid arthritis (RA) and ankylosing spondylitis (AS), are marked by disrupted bone metabolism and chronic inflammation. Programmed cell death (PCD), such as ferroptosis, Cuproptosis and pyroptosis, has been reported to participate in various rheumatic diseases[1]. Pyroptosis, a crucial biological event, has been associated with bone metabolism in rheumatic diseases[2], yet the predictive value of pyroptosis in these conditions remains unclear.

Objectives:

To investigate the correlation between pyroptotic genes and bone metabolism in rheumatic immune diseases like RA and AS. Utilizing public datasets, RNA-seq, and ELISA assays, this study aims to assess the potential of pyroptotic genes as early indicators of bone damage, incorporating a novel machine learning approach. The findings are intended to support the advancement of precision medicine.

Methods:

Prior to the substantive study, we conducted an analysis of different PCD gene sets and bone mineralization/resorption gene sets across 3 public datasets (GSE15258, GSE25101, and GSE73754). In addition, we also used CIBERSORT and single-cell transcriptome sequencing to confirm the cell subpopulation distribution of pyroptotic gene expression. We then utilized RNA-seq to profile the whole-blood transcriptomes of RA and AS patients, as well as healthy volunteers to validate the inference from public data. Concomitantly, ELISA assays were used to evaluate pertinent bone metabolism markers. We further incorporated public datasets and made use of blending machine learning methods to investigate the correlation between pyroptotic gene expression and bone metabolism. The first layer of this blending machine learning model consists of XGBoost, Logistic, and LightGBM, and the second layer is a random forest model. The training set accounted for 85%, the verification set accounted for 15%, and the second layer model selected all samples as the test set.

Results:

Our investigation identifies a substantial correlation between pyroptotic gene expression (compared with Apoptosis, Ferroptosis, Autophagy, Necroptosis, Cuproptosis and Parthanatos) and bone metabolism in rheumatic diseases (Figure 1). The distribution of pyroptotic genes was mainly concentrated in macrophage subpopulation. Notably, the pyroptotic genes - TNF, IRF2, CASP8, PYCARD, and NLRC4 successfully predicted the bone resorption score in AS patients (Test set AUC: 0.871, Accuracy: 0.833, Figure 2B), however, fell short in predicting bone mineralization scores (Test set AUC: 0.586, Accuracy: 0.583, Figure 2C). For RA patients, however, these genes were good predictors of both bone resorption (Test set AUC: 0.908, Figure 2D) and bone mineralization scores (Test set AUC: 0.859, Figure 2E). Furthermore, we confirmed a certain correlation between pyroptotic-related gene expression and the ELISA test indicators(including calcium, phosphorus, OPG, RANKL and CTX-I) in our samples.

Conclusion:

By integrating RNA-seq profiling, ELISA assays, and blending machine learning analysis, our study emphasizes the complexity of the interplay between pyroptosis and bone metabolism in rheumatic diseases. The pyroptosis-related indicators we discovered allow for early prediction of bone metabolism in rheumatic diseases.

References:

[1] Zhao J, Jiang P, Guo S, Schrodi SJ, He D. Apoptosis, Autophagy, NETosis, Necroptosis, and Pyroptosis Mediated Programmed Cell Death as Targets for Innovative Therapy in Rheumatoid Arthritis. FRONT IMMUNOL. 2021 2021/1/20;12:809806. [2] Zhuang L, Luo X, Wu S, Lin Z, Zhang Y, Zhai Z, et al. Disulfiram alleviates pristane-induced lupus via inhibiting GSDMD-mediated pyroptosis. CELL DEATH DISCOV. 2022 2022/9/3;8(1):379.

Acknowledgements:

NIL.

Disclosure of Interests:

None declared.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贰鸟应助科研通管家采纳,获得20
1秒前
贰鸟应助科研通管家采纳,获得20
1秒前
design发布了新的文献求助10
17秒前
kanong完成签到,获得积分0
28秒前
37秒前
wao完成签到 ,获得积分10
39秒前
无辜的行云完成签到 ,获得积分0
39秒前
Jonsnow完成签到 ,获得积分10
43秒前
摆渡人发布了新的文献求助10
44秒前
风起枫落完成签到 ,获得积分10
57秒前
design完成签到,获得积分10
58秒前
ken131完成签到 ,获得积分10
1分钟前
yml完成签到 ,获得积分10
1分钟前
刻苦的新烟完成签到 ,获得积分10
1分钟前
茶包完成签到,获得积分10
1分钟前
xy完成签到 ,获得积分20
1分钟前
光亮若翠完成签到,获得积分10
1分钟前
vampire完成签到,获得积分10
1分钟前
woshiwuziq完成签到 ,获得积分10
1分钟前
柒月完成签到 ,获得积分10
1分钟前
SC完成签到 ,获得积分10
1分钟前
俊逸的白梦完成签到 ,获得积分10
1分钟前
1分钟前
小巧的柏柳完成签到 ,获得积分10
1分钟前
温婉的凝丹完成签到 ,获得积分10
2分钟前
摆渡人发布了新的文献求助10
2分钟前
多克特里完成签到 ,获得积分10
2分钟前
2分钟前
林利芳完成签到 ,获得积分10
2分钟前
听南发布了新的文献求助10
2分钟前
zai完成签到 ,获得积分20
2分钟前
悠明夜月完成签到 ,获得积分10
2分钟前
2分钟前
luffy189完成签到 ,获得积分10
2分钟前
摆渡人发布了新的文献求助10
2分钟前
α(阿尔法)完成签到 ,获得积分0
2分钟前
nuliguan完成签到 ,获得积分10
3分钟前
赘婿应助摆渡人采纳,获得10
3分钟前
李小二完成签到,获得积分10
3分钟前
3分钟前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
How to mix methods: A guide to sequential, convergent, and experimental research designs 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3111635
求助须知:如何正确求助?哪些是违规求助? 2761766
关于积分的说明 7667203
捐赠科研通 2416791
什么是DOI,文献DOI怎么找? 1282892
科研通“疑难数据库(出版商)”最低求助积分说明 619187
版权声明 599499