A Simple but Effective Approach for Unsupervised Few-Shot Graph Classification

计算机科学 机器学习 过度拟合 杠杆(统计) 人工智能 图形 数据挖掘 理论计算机科学 人工神经网络
作者
Yonghao Liu,Lan Huang,Bowen Cao,Ximing Li,Fausto Giunchiglia,Xiaoyue Feng,Renchu Guan
标识
DOI:10.1145/3589334.3645587
摘要

Graphs, as a fundamental data structure, have proven efficacy in modeling complex relationships between objects and are therefore found in wide web applications. Graph classification is an essential task in graph data analysis, which can effectively assist in extracting information and mining content from the web. Recently, few-shot graph classification, a more realistic and challenging task, has garnered great research interest. Existing few-shot graph classification models are all supervised, assuming abundant labeled data in base classes for meta-training. However, sufficient annotation is often challenging to obtain in practice due to high costs or demand for expertise. Moreover, they commonly adopt complicated meta-learning algorithms via episodic training to transfer prior knowledge from base classes. To break free from these constraints, in this paper, we propose a simple yet effective approach named SMART for unsupervised few-shot graph classification without using any labeled data. SMART employs transfer learning philosophy instead of the previously prevailing meta-learning paradigm, avoiding the need for sophisticated meta-learning algorithms. Additionally, we adopt a novel mixup strategy to augment the original graph data and leverage unsupervised pretraining on these data to obtain the expressive graph encoder. We also utilize the prompt tuning technique to alleviate the overfitting and low fine-tuning efficiency caused by the limited support samples of novel classes. Extensive experimental results demonstrate the superiority of our proposed approach, significantly surpassing even leading supervised few-shot graph classification models. Our code is available here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助耍酷的母鸡采纳,获得30
1秒前
1秒前
兴奋小丸子完成签到,获得积分10
1秒前
Yi羿完成签到 ,获得积分10
2秒前
Jane完成签到,获得积分10
2秒前
丘比特应助背后飞柏采纳,获得10
2秒前
王359发布了新的文献求助10
3秒前
hammer发布了新的文献求助10
5秒前
6秒前
xinanan发布了新的文献求助10
6秒前
7秒前
王359完成签到,获得积分10
8秒前
9秒前
Tethys完成签到 ,获得积分10
9秒前
温暖念柏发布了新的文献求助30
10秒前
刀刀发布了新的文献求助10
10秒前
10秒前
研友_VZG7GZ应助hammer采纳,获得10
10秒前
yurunxintian完成签到,获得积分10
11秒前
14秒前
15秒前
脑洞疼应助JJ采纳,获得10
16秒前
zlqq发布了新的文献求助10
16秒前
16秒前
lmj717完成签到,获得积分10
17秒前
17秒前
刀刀完成签到,获得积分10
18秒前
万能图书馆应助韵寒禾香采纳,获得10
18秒前
Alex发布了新的文献求助200
19秒前
Raymond应助ying采纳,获得10
19秒前
深情安青应助ying采纳,获得10
19秒前
无奈的天玉完成签到,获得积分10
20秒前
含蓄妖丽发布了新的文献求助10
20秒前
可行完成签到,获得积分10
22秒前
洪山老狗完成签到,获得积分10
22秒前
prxMatcha发布了新的文献求助10
22秒前
五五完成签到,获得积分10
23秒前
23秒前
之组长了完成签到 ,获得积分10
25秒前
Somnolence咩发布了新的文献求助10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965976
求助须知:如何正确求助?哪些是违规求助? 3511306
关于积分的说明 11157319
捐赠科研通 3245873
什么是DOI,文献DOI怎么找? 1793215
邀请新用户注册赠送积分活动 874245
科研通“疑难数据库(出版商)”最低求助积分说明 804286