A Simple but Effective Approach for Unsupervised Few-Shot Graph Classification

计算机科学 机器学习 过度拟合 杠杆(统计) 人工智能 图形 数据挖掘 理论计算机科学 人工神经网络
作者
Yonghao Liu,Lan Huang,Bowen Cao,Ximing Li,Fausto Giunchiglia,Xiaoyue Feng,Renchu Guan
标识
DOI:10.1145/3589334.3645587
摘要

Graphs, as a fundamental data structure, have proven efficacy in modeling complex relationships between objects and are therefore found in wide web applications. Graph classification is an essential task in graph data analysis, which can effectively assist in extracting information and mining content from the web. Recently, few-shot graph classification, a more realistic and challenging task, has garnered great research interest. Existing few-shot graph classification models are all supervised, assuming abundant labeled data in base classes for meta-training. However, sufficient annotation is often challenging to obtain in practice due to high costs or demand for expertise. Moreover, they commonly adopt complicated meta-learning algorithms via episodic training to transfer prior knowledge from base classes. To break free from these constraints, in this paper, we propose a simple yet effective approach named SMART for unsupervised few-shot graph classification without using any labeled data. SMART employs transfer learning philosophy instead of the previously prevailing meta-learning paradigm, avoiding the need for sophisticated meta-learning algorithms. Additionally, we adopt a novel mixup strategy to augment the original graph data and leverage unsupervised pretraining on these data to obtain the expressive graph encoder. We also utilize the prompt tuning technique to alleviate the overfitting and low fine-tuning efficiency caused by the limited support samples of novel classes. Extensive experimental results demonstrate the superiority of our proposed approach, significantly surpassing even leading supervised few-shot graph classification models. Our code is available here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初次见面完成签到,获得积分10
1秒前
无奈的若风应助白华苍松采纳,获得20
1秒前
行者无疆完成签到,获得积分10
2秒前
娄十三发布了新的文献求助10
2秒前
Skyllne完成签到 ,获得积分10
3秒前
大宽完成签到,获得积分10
4秒前
盛施霏发布了新的文献求助10
4秒前
5秒前
科研通AI6应助rokexu采纳,获得10
7秒前
半间歇式聚合反应完成签到 ,获得积分10
8秒前
科研通AI6应助飘逸的又夏采纳,获得10
9秒前
求助文献完成签到,获得积分10
9秒前
飞飞完成签到,获得积分10
11秒前
小巧钢笔完成签到,获得积分10
12秒前
BareBear应助科研通管家采纳,获得10
13秒前
BareBear应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
13秒前
ding应助科研通管家采纳,获得10
13秒前
BareBear应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
BareBear应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得30
13秒前
大模型应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得30
13秒前
思源应助科研通管家采纳,获得10
14秒前
zyl完成签到,获得积分10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
文艺的懿应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
蜘猪侠zx应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
Zx_1993应助科研通管家采纳,获得20
14秒前
BareBear应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378722
求助须知:如何正确求助?哪些是违规求助? 4503127
关于积分的说明 14015166
捐赠科研通 4411843
什么是DOI,文献DOI怎么找? 2423519
邀请新用户注册赠送积分活动 1416462
关于科研通互助平台的介绍 1393901