A Simple but Effective Approach for Unsupervised Few-Shot Graph Classification

计算机科学 机器学习 过度拟合 杠杆(统计) 人工智能 图形 数据挖掘 理论计算机科学 人工神经网络
作者
Yonghao Liu,Lan Huang,Bowen Cao,Ximing Li,Fausto Giunchiglia,Xiaoyue Feng,Renchu Guan
标识
DOI:10.1145/3589334.3645587
摘要

Graphs, as a fundamental data structure, have proven efficacy in modeling complex relationships between objects and are therefore found in wide web applications. Graph classification is an essential task in graph data analysis, which can effectively assist in extracting information and mining content from the web. Recently, few-shot graph classification, a more realistic and challenging task, has garnered great research interest. Existing few-shot graph classification models are all supervised, assuming abundant labeled data in base classes for meta-training. However, sufficient annotation is often challenging to obtain in practice due to high costs or demand for expertise. Moreover, they commonly adopt complicated meta-learning algorithms via episodic training to transfer prior knowledge from base classes. To break free from these constraints, in this paper, we propose a simple yet effective approach named SMART for unsupervised few-shot graph classification without using any labeled data. SMART employs transfer learning philosophy instead of the previously prevailing meta-learning paradigm, avoiding the need for sophisticated meta-learning algorithms. Additionally, we adopt a novel mixup strategy to augment the original graph data and leverage unsupervised pretraining on these data to obtain the expressive graph encoder. We also utilize the prompt tuning technique to alleviate the overfitting and low fine-tuning efficiency caused by the limited support samples of novel classes. Extensive experimental results demonstrate the superiority of our proposed approach, significantly surpassing even leading supervised few-shot graph classification models. Our code is available here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HHH完成签到,获得积分10
刚刚
科研通AI2S应助七七采纳,获得10
刚刚
万能图书馆应助猫车高手采纳,获得10
1秒前
萌新发布了新的文献求助10
1秒前
2秒前
小蘑菇应助酷炫的听寒采纳,获得10
2秒前
在水一方应助guzhfia采纳,获得10
2秒前
CR7发布了新的文献求助10
3秒前
3秒前
无花果应助大头有大智慧采纳,获得10
4秒前
李爱国应助coolkid采纳,获得10
4秒前
浮游应助TS采纳,获得10
4秒前
tzy02发布了新的文献求助10
5秒前
5秒前
Phinny发布了新的文献求助10
5秒前
6秒前
ww完成签到,获得积分10
6秒前
6秒前
lll完成签到,获得积分10
6秒前
7秒前
7秒前
aaa5a123完成签到 ,获得积分10
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助100
8秒前
8秒前
9秒前
Lucas应助不是一个名字采纳,获得10
9秒前
凝安发布了新的文献求助30
9秒前
Xinzz完成签到 ,获得积分10
9秒前
10秒前
顺利静竹完成签到,获得积分20
10秒前
10秒前
11秒前
11秒前
11秒前
果果发布了新的文献求助20
11秒前
祁乐安发布了新的文献求助10
12秒前
chunhuizhang完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4885855
求助须知:如何正确求助?哪些是违规求助? 4170775
关于积分的说明 12942531
捐赠科研通 3931395
什么是DOI,文献DOI怎么找? 2157039
邀请新用户注册赠送积分活动 1175458
关于科研通互助平台的介绍 1080012