A Simple but Effective Approach for Unsupervised Few-Shot Graph Classification

计算机科学 机器学习 过度拟合 杠杆(统计) 人工智能 图形 数据挖掘 理论计算机科学 人工神经网络
作者
Yonghao Liu,Lan Huang,Bowen Cao,Ximing Li,Fausto Giunchiglia,Xiaoyue Feng,Renchu Guan
标识
DOI:10.1145/3589334.3645587
摘要

Graphs, as a fundamental data structure, have proven efficacy in modeling complex relationships between objects and are therefore found in wide web applications. Graph classification is an essential task in graph data analysis, which can effectively assist in extracting information and mining content from the web. Recently, few-shot graph classification, a more realistic and challenging task, has garnered great research interest. Existing few-shot graph classification models are all supervised, assuming abundant labeled data in base classes for meta-training. However, sufficient annotation is often challenging to obtain in practice due to high costs or demand for expertise. Moreover, they commonly adopt complicated meta-learning algorithms via episodic training to transfer prior knowledge from base classes. To break free from these constraints, in this paper, we propose a simple yet effective approach named SMART for unsupervised few-shot graph classification without using any labeled data. SMART employs transfer learning philosophy instead of the previously prevailing meta-learning paradigm, avoiding the need for sophisticated meta-learning algorithms. Additionally, we adopt a novel mixup strategy to augment the original graph data and leverage unsupervised pretraining on these data to obtain the expressive graph encoder. We also utilize the prompt tuning technique to alleviate the overfitting and low fine-tuning efficiency caused by the limited support samples of novel classes. Extensive experimental results demonstrate the superiority of our proposed approach, significantly surpassing even leading supervised few-shot graph classification models. Our code is available here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
雪白的迎波完成签到,获得积分20
刚刚
清脆代桃发布了新的文献求助10
刚刚
2秒前
hellosci666完成签到,获得积分10
2秒前
2秒前
好运莲莲完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
完美世界应助瑜玦采纳,获得10
3秒前
3秒前
3秒前
xiaofei完成签到 ,获得积分20
3秒前
wangwangdui发布了新的文献求助10
3秒前
爱学习的鼠鼠完成签到,获得积分10
4秒前
冯习完成签到,获得积分10
4秒前
Xiaoxiao应助完美菜菜采纳,获得30
4秒前
wang完成签到 ,获得积分10
5秒前
5秒前
LLL完成签到,获得积分10
5秒前
5秒前
体贴忆之完成签到,获得积分20
5秒前
小何同学发布了新的文献求助10
6秒前
Alan完成签到,获得积分10
6秒前
6秒前
段一帆发布了新的文献求助10
6秒前
liu完成签到,获得积分10
7秒前
杨洋发布了新的文献求助10
7秒前
外向立辉完成签到,获得积分10
7秒前
凉风送信发布了新的文献求助10
8秒前
朴茶发布了新的文献求助10
9秒前
ZHANES发布了新的文献求助10
9秒前
Ly发布了新的文献求助30
9秒前
9秒前
9秒前
科研通AI5应助iceburg采纳,获得10
9秒前
mu发布了新的文献求助10
9秒前
甜甜凡蕾完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Diagnostic et prise en charge du prurit associé à la maladie rénale chronique chez les patients hémodialysés 1000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559223
求助须知:如何正确求助?哪些是违规求助? 3985809
关于积分的说明 12340549
捐赠科研通 3656376
什么是DOI,文献DOI怎么找? 2014374
邀请新用户注册赠送积分活动 1049168
科研通“疑难数据库(出版商)”最低求助积分说明 937521