级联故障
计算机科学
人工神经网络
概率逻辑
网格
脆弱性评估
电网
可靠性工程
电力系统
GSM演进的增强数据速率
级联
分布式计算
功率(物理)
机器学习
人工智能
工程类
物理
量子力学
心理学
几何学
数学
心理弹性
化学工程
心理治疗师
作者
Karuna Bhaila,Xintao Wu
标识
DOI:10.1109/greentech58819.2024.10520535
摘要
Probabilistic data-driven methods allow faster exploration at low computational cost for cascading failure analysis in power systems compared to statistical physics-based methods. Motivated by the nature of failure propagation, we propose using Graph Neural Networks (GNNs) to study cascading failures in power grids in an end-to-end manner. The goal is to train GNNs using power grid profiles conditioned on component failures and predict the vulnerability of buses and branches after cascade termination. We empirically verify several formulations of GNNs on these tasks. Our evaluation demonstrates the efficiency of GNN-based methods for end-to-end cascading failure prediction on the IEEE 39-bus and 118-bus test systems. Code at https://github.com/karuna-bhaila/gnn-cascading-failure.
科研通智能强力驱动
Strongly Powered by AbleSci AI