Controlled growth of high-quality SnSe nanoplates assisted by machine learning
材料科学
质量(理念)
纳米技术
计算机科学
物理
量子力学
作者
Huijia Luo,Wenwu Pan,Junliang Liu,Han Wang,Songqing Zhang,Yongling Ren,Cailei Yuan,Wen Lei
出处
期刊:Journal of materials chemistry. A, Materials for energy and sustainability [The Royal Society of Chemistry] 日期:2024-01-01
标识
DOI:10.1039/d4ta06727d
摘要
Machine learning (ML) approaches have emerged as powerful tools to accelerate materials discovery and optimization, offering a sustainable alternative to traditional trial-and-error methods in exploratory experiments.