Deep learning‐based inversion with discrete cosine transform discretization for two‐dimensional basement relief imaging of sedimentary basins from observed gravity anomalies

地质学 沉积盆地 人工神经网络 地球物理学 深度学习 重力异常 沉积岩 人工智能 古生物学 计算机科学 油田
作者
Arka Roy,Yunus Levent Ekinci,Çağlayan Balkaya,Hanbing Ai
出处
期刊:Geophysical Prospecting [Wiley]
标识
DOI:10.1111/1365-2478.13647
摘要

Abstract Sedimentary basins, integral to Earth's geological history and energy resource exploration, undergo complex changes driven by sedimentation, subsidence and geological processes. Gravity anomaly inversion is a crucial technique offering insights into subsurface structures and density variations. Our study addresses the challenge of complex subsurface structure assessment by leveraging deep neural networks to invert observed gravity anomalies. Optimization approaches traditionally incorporate known density distributions obtained from borehole data or geological logging for inverting basement depth in sedimentary basins using observed gravity anomalies. Our study explores the application of deep neural networks in accurate architectural assessment of sedimentary basins and demonstrates their significance in mineral and hydrocarbon exploration. Recent years have witnessed a surge in the use of machine learning in geophysics, with deep learning models playing a pivotal role. Integrating deep neural networks, such as the feedforward neural networks, has revolutionized subsurface density distribution and basement depth estimation. This study introduces a deep neural network specifically tailored for inverting observed gravity anomalies to estimate two‐dimensional basement relief topographies in sedimentary basins. To enhance computational efficiency, a one‐dimensional discrete cosine transform based discretization approach is employed. Synthetic data, generated using non‐Gaussian fractals, compensates for the scarcity of true datasets for training the deep neural network model. The algorithm's robustness is validated through noise introduction with comparisons against an efficient and traditional global optimization‐based approach. Gravity anomalies of real sedimentary basins further validate the algorithm's efficacy, establishing it as a promising methodology for accurate and efficient subsurface imaging in geological exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xyrehab完成签到,获得积分10
1秒前
1秒前
Jasper应助细心的冬易采纳,获得10
1秒前
yao发布了新的文献求助10
2秒前
卷卷菜发布了新的文献求助10
3秒前
5秒前
Dawn完成签到,获得积分10
6秒前
望今如昔关注了科研通微信公众号
6秒前
who关注了科研通微信公众号
6秒前
金云完成签到,获得积分10
7秒前
姜夔完成签到,获得积分10
7秒前
SYLH应助甄冰海采纳,获得10
7秒前
7秒前
8秒前
冬去春来完成签到 ,获得积分10
9秒前
10秒前
毛毛虫发布了新的文献求助10
10秒前
张朵朵发布了新的文献求助10
10秒前
10秒前
13秒前
缥缈伟祺完成签到,获得积分10
13秒前
13秒前
13秒前
科研通AI5应助蝌蚪采纳,获得10
14秒前
维妮妮完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
17秒前
mork发布了新的文献求助10
18秒前
动听安筠发布了新的文献求助10
20秒前
汉堡包应助ylh采纳,获得10
20秒前
20秒前
Zz发布了新的文献求助10
20秒前
我是老大应助伊可采纳,获得10
20秒前
cllcx完成签到 ,获得积分10
21秒前
岸芷汀兰完成签到,获得积分10
22秒前
22秒前
aniywn完成签到 ,获得积分10
23秒前
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3652210
求助须知:如何正确求助?哪些是违规求助? 3216430
关于积分的说明 9711869
捐赠科研通 2924198
什么是DOI,文献DOI怎么找? 1601568
邀请新用户注册赠送积分活动 754238
科研通“疑难数据库(出版商)”最低求助积分说明 733002