Outcome prediction comparison of ischemic areas’ radiomics in acute anterior circulation non-lacunar infarction

无线电技术 医学 腔隙性梗死 心脏病学 内科学 梗塞 循环(流体动力学) 半影 放射科 心肌梗塞 缺血 工程类 航空航天工程
作者
Xiang Zhou,Jinxi Meng,Kangwei Zhang,Hui Zheng,Qian Xi,Yifeng Peng,Xiaowen Xu,Jianjun Gu,Qing Xia,Lai Wei,Peijun Wang
出处
期刊:Brain communications [Oxford University Press]
卷期号:6 (6)
标识
DOI:10.1093/braincomms/fcae393
摘要

Abstract The outcome prediction of acute anterior circulation non-lacunar infarction (AACNLI) is important for the precise clinical treatment of this disease. However, the accuracy of prognosis prediction is still limited. This study aims to develop and compare machine learning models based on MRI radiomics of multiple ischaemic-related areas for prognostic prediction in AACNLI. This retrospective multicentre study consecutively included 372 AACNLI patients receiving MRI examinations and conventional therapy between October 2020 and February 2023. These were grouped into training set, internal test set and external test set. MRI radiomics features were extracted from the mask diffusion-weighted imaging, mask apparent diffusion coefficient (ADC) and mask ADC620 by AACNLI segmentations. Grid search parameter tuning was performed on 12 feature selection and 9 machine learning algorithms, and algorithm combinations with the smallest rank-sum of area under the curve (AUC) was selected for model construction. The performances of all models were evaluated in the internal and external test sets. The AUC of radiomics model was larger than that of non-radiomics model with the same machine learning algorithm in the three mask types. The radiomics model using least absolute shrinkage and selection operator—random forest algorithm combination gained the smallest AUC rank-sum among all the algorithm combinations. The AUC of the model with ADC620 was 0.98 in the internal test set and 0.91 in the external test set, and the weighted average AUC in the three sets was 0.96, the largest among three mask types. The Shapley additive explanations values of the maximum of National Institute of Health Stroke Scale score within 7 days from onset (7-d NIHSSmax), stroke-associated pneumonia and admission Glasgow coma scale score ranked top three among the features in AACNLI outcome prediction. In conclusion, the random forest model with mask ADC620 can accurately predict the AACNLI outcome and reveal the risk factors leading to the poor prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀星星发布了新的文献求助10
1秒前
wangxiaoqing发布了新的文献求助10
2秒前
打打应助英勇珊珊采纳,获得10
3秒前
ww417发布了新的文献求助10
4秒前
Nangong完成签到,获得积分10
4秒前
帕丁顿发布了新的文献求助10
5秒前
6秒前
完美世界应助wangxiaoqing采纳,获得10
7秒前
勤劳的鸡发布了新的文献求助10
7秒前
石头完成签到,获得积分10
8秒前
8秒前
9秒前
小胡完成签到,获得积分20
9秒前
做科研的小丸子完成签到,获得积分10
9秒前
Ava应助Ran采纳,获得10
9秒前
hucchongzi举报乐正熠彤求助涉嫌违规
10秒前
10秒前
猪猪hero应助yKkkkkk采纳,获得10
10秒前
帕丁顿完成签到,获得积分10
10秒前
11秒前
11秒前
领导范儿应助典雅小丸子采纳,获得10
11秒前
11秒前
11秒前
小刘发布了新的文献求助10
11秒前
JamesPei应助黑暗炸鸡采纳,获得10
12秒前
zhyi完成签到,获得积分20
13秒前
hometown发布了新的文献求助10
13秒前
orixero应助小胡采纳,获得10
13秒前
13秒前
yy完成签到,获得积分20
13秒前
大个应助htx采纳,获得10
13秒前
13秒前
15秒前
王磊完成签到,获得积分10
15秒前
16秒前
饱满以松发布了新的文献求助10
16秒前
mini小萝卜完成签到,获得积分10
16秒前
认真若云发布了新的文献求助10
17秒前
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979332
求助须知:如何正确求助?哪些是违规求助? 3523278
关于积分的说明 11216934
捐赠科研通 3260722
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878862
科研通“疑难数据库(出版商)”最低求助积分说明 807113