Stress Relaxation and Creep Response of Glassy Hydrogels with Dense Physical Associations

材料科学 蠕动 自愈水凝胶 应力松弛 放松(心理学) 压力(语言学) 复合材料 高分子化学 心理学 神经科学 语言学 哲学
作者
Hao Qiu,Ji Lin,Li Hou,Rui Xiao,Qiang Zheng,Zi Liang Wu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c22398
摘要

Various glassy hydrogels are developed by forming dense physical associations within the matrices, which exhibit forced elastic deformation and possess high stiffness, strength, and toughness. Here, the viscoplastic behaviors of the glassy hydrogel of poly(methacrylamide-co-methacrylic acid) are investigated by stress relaxation and creep measurements. We found that the characteristic time of stress relaxation of the glassy gel is much smaller than that of amorphous polymers. The varying hydrogen bond strength leads to a broad distribution of structural activation energies, which in turn affects the range of characteristic time. In the presence of water, the weak hydrogen bond associations are easily disrupted under applied strain, enhancing segmental mobility and reducing relaxation time in the preyield regime, while in the postyield regime, the relaxation time increases slightly since the chain stretching increases the energy barrier. In creep tests, the creep strain rate accelerates at the initial stage due to stress-activated segments and then decelerates as chains are extensively stretched. The stress required for structural activation during creep is much lower than the Young's modulus of the gel, reflecting the poor structural stability. To further analyze the underlying mechanism of the glassy gel, a micromechanical model is established based on an extension on shear transformation zone theory. By incorporating a state variable for hydrogen bond density, this model can capture the intricate mechanical responses of glassy gels. Our findings reveal that glassy hydrogels are far from the thermodynamic equilibrium state, exhibiting rapid segment activation under external loading. This work provides insights to the dynamics and structural stability of glassy materials and can promote the design and applications of tough hydrogels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JY发布了新的文献求助10
2秒前
bkagyin应助自觉的小凝采纳,获得10
3秒前
研友_VZG7GZ应助cdsd采纳,获得10
4秒前
xwy发布了新的文献求助10
5秒前
短巷完成签到 ,获得积分10
8秒前
老虎皮发布了新的文献求助10
8秒前
9秒前
kkkhhh关注了科研通微信公众号
11秒前
12秒前
彭于晏应助Oying采纳,获得10
13秒前
moon发布了新的文献求助10
13秒前
大模型应助ww采纳,获得10
14秒前
救驾来迟发布了新的文献求助10
15秒前
牛牛完成签到 ,获得积分10
17秒前
18秒前
20秒前
20秒前
20秒前
21秒前
研友_Z72jyn发布了新的文献求助10
22秒前
CXY发布了新的文献求助10
23秒前
星芋啵啵发布了新的文献求助10
24秒前
彭于晏应助结实的老虎采纳,获得10
24秒前
24秒前
25秒前
25秒前
Orange应助lxz采纳,获得10
25秒前
26秒前
ww发布了新的文献求助10
26秒前
JY完成签到,获得积分20
27秒前
爱睡觉的小仙女完成签到 ,获得积分10
28秒前
Oying发布了新的文献求助10
29秒前
liuzhigang发布了新的文献求助10
29秒前
30秒前
kkkhhh发布了新的文献求助10
30秒前
hzxy_lyt应助小蘑菇采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
31秒前
慕青应助科研通管家采纳,获得10
31秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3378720
求助须知:如何正确求助?哪些是违规求助? 2994242
关于积分的说明 8758590
捐赠科研通 2678801
什么是DOI,文献DOI怎么找? 1467379
科研通“疑难数据库(出版商)”最低求助积分说明 678640
邀请新用户注册赠送积分活动 670251