Modelling and Optimization of Shunt Current Management in Industrial Alkaline Water Electrolysis: Grounding, Forced Potentials and Combination of Multiple Stacks

电解 接地 电流(流体) 分流(医疗) 碱性水电解 环境科学 计算机科学 电气工程 工程类 化学 电极 医学 电解质 心脏病学 物理化学
作者
Simon Appelhaus,Maik Becker,Henning Becker,Thomas Turek
出处
期刊:Meeting abstracts 卷期号:MA2024-02 (25): 2003-2003
标识
DOI:10.1149/ma2024-02252003mtgabs
摘要

Background Alkaline Water Electrolysis (AWE) is a key technology for green hydrogen production. Unlike proton exchange membrane (PEM) water electrolysis, AWE requires a highly conductive electrolyte, typically ~30 wt% KOH solution, to be pumped through the water electrolysis cells. However, it does not require expensive or critical raw materials and can be dynamically operated with renewable energies [1]. In industrial applications, many cells are connected electrically in series, thus forming a “Stack”. Consequently, the stack can be supplied with electricity at higher voltage, typically between 100 V and 600 V. At the same time, the cells are connected in parallel to the same liquid feed from a single pump, which is distributed to the cells and collected afterwards via a manifold [2]. Because the electrolyte is conductive, a short circuit occurs as some current bypasses the cells through the manifold. This current is known as shunt or leakage current and has been observed in other electrochemical flow cell systems as well, such as chlor-alkali electrolysis or redox flow batteries [3]. The bypassing current has multiple undesirable effects: reduction of current efficiency, maldistribution of load across the cells and corrosion due to electrochemical reactions outside of the electrolysis cells [4]. Modelling approach The modelling performed in this work aims to optimize the management of shunt currents in industrial electrolysis in order to reduce the damage caused by shunt currents while maintaining high efficiencies. This model is based on an equivalent circuit diagram which represents the electrolyte channels as resistors and the reaction as a voltage drop for each cell and was realized in the Python programming language. This approach has been shown to be reasonably accurate in comparisons to experimental results [5]. In this work, the model was then used to optimize a number of shunt current mitigation techniques, such as grounding and forced external potentials, as well as the connection of multiple electrolysis stacks to a single rectifier providing DC current. The grounding of the electrolyte diverts current exiting the stack through the electrolyte in a controlled manner and protects the cells and external conductive components, such as pumps or pipes, from shunt currents. At the same time, it increases overall efficiency losses in the system, as the resistance to the ground electrode must be lower than that between the cells. For this reason, optimization has been carried out between current losses and shunt currents, depending on the size and position of the ground electrode. In addition, a forced potential in the feed and outlet manifold to reduce current flow from the cell was investigated. The connection of multiple stacks to a single rectifier is an opportunity to reduce the balance of plant (BoP) costs of large electrolysis systems significantly, as rectifiers are the single most expensive component apart from the stack itself [6]. For this reason, additional modelling was carried out on the effect of multiple stacks being ionically separated but connected by a grounding electrode. During this talk, the modelling and optimization will be presented. In addition, specific design recommendations and possible future improvement areas to improve industrial stack and plant design will be given. References [1] J. Brauns, T. Turek, Processes 2020 , 8 (2) , 248. DOI: 10.3390/pr8020248. [2] R. Qi, M. Becker, J. Brauns, T. Turek, J. Lin, Y. Song, Journal of Power Sources 2023 , 579 , 233222. DOI: 10.1016/j.jpowsour.2023.233222. [3] M. Skyllas-Kazacos, J. McCann, Y. Li, J. Bao, A. Tang, ChemistrySelect 2016 , 1 (10) , 2249–2256. DOI: 10.1002/slct.201600432. [4] A. T. Kuhn, J. S. Booth, J Appl Electrochem 1980 , 10 (2) , 233–237. DOI: 10.1007/BF00726091. [5] H. S. Burney, R. E. White, J. Electrochem. Soc. 1988 , 135 (7) , 1609–1612. DOI: 10.1149/1.2096069. [6] M. Holst, S. Aschbrenner, T. Smolinka, C. Voglstätter, G. Grimm, in press. DOI: 10.24406/publica-1318. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助CHEN采纳,获得10
刚刚
愉快凌晴完成签到 ,获得积分10
1秒前
Owen应助yoyo采纳,获得10
1秒前
1秒前
周周完成签到,获得积分10
1秒前
1秒前
御风甜咖啡完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
小权拳的权完成签到,获得积分10
3秒前
害怕的水之完成签到,获得积分10
3秒前
guohuameike完成签到,获得积分10
3秒前
斯文友琴完成签到,获得积分10
3秒前
sljsb完成签到,获得积分10
4秒前
4秒前
板栗完成签到,获得积分10
4秒前
Sylvia_J完成签到 ,获得积分10
4秒前
乐乐应助轩1采纳,获得10
4秒前
Benjamin完成签到,获得积分10
5秒前
Fantansy发布了新的文献求助10
5秒前
5秒前
雨夜聆风完成签到,获得积分10
5秒前
vivian完成签到 ,获得积分10
6秒前
崔志海完成签到,获得积分10
6秒前
砍柴少年发布了新的文献求助50
7秒前
7秒前
Ivy发布了新的文献求助10
7秒前
flamingo完成签到,获得积分10
7秒前
合适怡完成签到,获得积分10
8秒前
8秒前
8秒前
Once完成签到,获得积分10
8秒前
8秒前
9秒前
朴素爆米花完成签到,获得积分10
9秒前
无限向珊完成签到,获得积分10
9秒前
舍我其谁发布了新的文献求助10
9秒前
10秒前
现代的南风完成签到 ,获得积分10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009167
求助须知:如何正确求助?哪些是违规求助? 3549013
关于积分的说明 11300491
捐赠科研通 3283494
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886146
科研通“疑难数据库(出版商)”最低求助积分说明 811259