已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Conv-DMSA: an efficient imputation model for multivariate time series through diagonal mask self-attention

计算机科学 多元统计 对角线的 插补(统计学) 时间序列 系列(地层学) 数据挖掘 算法 机器学习 数学 缺少数据 古生物学 几何学 生物
作者
Hao Zhang,Weilong Ding,Qi Yu,Zijian Liu
出处
期刊:International Journal of Web Information Systems [Emerald (MCB UP)]
标识
DOI:10.1108/ijwis-04-2024-0119
摘要

Purpose The proposed model aims to tackle the data quality issues in multivariate time series caused by missing values. It preserves data set integrity by accurately imputing missing data, ensuring reliable analysis outcomes. Design/methodology/approach The Conv-DMSA model employs a combination of self-attention mechanisms and convolutional networks to handle the complexities of multivariate time series data. The convolutional network is adept at learning features across uneven time intervals through an imputation feature map, while the Diagonal Mask Self-Attention (DMSA) block is specifically designed to capture time dependencies and feature correlations. This dual approach allows the model to effectively address the temporal imbalance, feature correlation and time dependency challenges that are often overlooked in traditional imputation models. Findings Extensive experiments conducted on two public data sets and a real project data set have demonstrated the adaptability and effectiveness of the Conv-DMSA model for imputing missing data. The model outperforms baseline methods by significantly reducing the Root Mean Square Error (RMSE) metric, showcasing its superior performance. Specifically, Conv-DMSA has been found to reduce RMSE by 37.2% to 63.87% compared to other models, indicating its enhanced accuracy and efficiency in handling missing data in multivariate time series. Originality/value The Conv-DMSA model introduces a unique combination of convolutional networks and self-attention mechanisms to the field of missing data imputation. Its innovative use of a diagonal mask within the self-attention block allows for a more nuanced understanding of the data’s temporal and relational aspects. This novel approach not only addresses the existing shortcomings of conventional imputation methods but also sets a new standard for handling missing data in complex, multivariate time series data sets. The model’s superior performance and its capacity to adapt to varying levels of missing data make it a significant contribution to the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
春山完成签到 ,获得积分10
5秒前
阿九完成签到,获得积分20
5秒前
5秒前
b6完成签到,获得积分10
6秒前
6秒前
9秒前
11秒前
11秒前
shenlee发布了新的文献求助10
11秒前
rick3455完成签到 ,获得积分10
12秒前
凡平完成签到,获得积分10
12秒前
康康发布了新的文献求助10
12秒前
Venus发布了新的文献求助10
12秒前
lunar完成签到 ,获得积分10
13秒前
Beckyyy发布了新的文献求助10
14秒前
大气小天鹅完成签到 ,获得积分10
16秒前
Skywalker完成签到,获得积分10
19秒前
shenlee完成签到,获得积分10
21秒前
桐桐应助momo123采纳,获得10
22秒前
康康完成签到,获得积分10
22秒前
李爱国应助L_采纳,获得80
25秒前
cctv18应助终究采纳,获得10
27秒前
酸番茄完成签到 ,获得积分10
30秒前
飞鱼z完成签到 ,获得积分10
31秒前
32秒前
眼睛大的胡萝卜完成签到 ,获得积分10
32秒前
LJ完成签到,获得积分10
33秒前
李健应助parpate采纳,获得10
33秒前
amber完成签到 ,获得积分10
34秒前
火星的雪完成签到 ,获得积分10
36秒前
李健的小迷弟应助源子采纳,获得10
36秒前
yang完成签到 ,获得积分10
37秒前
随风完成签到,获得积分10
38秒前
严明完成签到,获得积分10
39秒前
严明完成签到,获得积分10
39秒前
40秒前
Kk完成签到,获得积分10
40秒前
parpate完成签到,获得积分10
41秒前
欢呼的忘幽完成签到,获得积分10
42秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422795
求助须知:如何正确求助?哪些是违规求助? 3023130
关于积分的说明 8903543
捐赠科研通 2710509
什么是DOI,文献DOI怎么找? 1486531
科研通“疑难数据库(出版商)”最低求助积分说明 687093
邀请新用户注册赠送积分活动 682312