Multicenter Double-Blind Study Evaluating AI-Driven Detection of Proximal Deep Vein Thrombosis

深静脉 血栓形成 多中心研究 医学 放射科 外科 随机对照试验
作者
Nicola Curry,Elisa Allen,Laura Silsby,Steve Goodacre,Christopher Deane,Alison Deary,Ashley Foster,James Griffiths,Rupa Sharma,Helen Thomas,Sven Mischewitz,Fouad Al-Noor
标识
DOI:10.1056/aioa2400741
摘要

BackgroundUltrasound is one of the most widely requested forms of diagnostic imaging. The costs for diagnosing deep vein thrombosis (DVT) in the UK are £175 million, annually. In at least 80% of cases, DVT is excluded. As health care provision becomes increasingly stretched, resource utilization needs to be optimized. This prospective, double-blind, test accuracy study was designed to test whether an artificial intelligence (AI)–guided software device (AutoDVT) could support nonradiology specialists to diagnose proximal DVT.MethodsEleven regional hospital DVT diagnostic clinics enrolled adult patients, 18 years of age or older, who were referred for investigation of symptoms suggestive of DVT, including a compression ultrasound. Prior to the clinical compression ultrasound, an AutoDVT scan was completed. This was a two-point AI-guided compression ultrasound scan. We found that the main primary outcome was the sensitivity of AutoDVT within a diagnostic algorithm for the detection of proximal DVT by nonradiology-trained staff. Other outcomes included specificity and positive/negative predictive value of AutoDVT.ResultsA total of 414 participants were enrolled. Proximal DVT was detected in 10.5% of those analyzed. AutoDVT resulted in 68% sensitivity (95% confidence interval [CI], 49 to 83%) and 80% specificity (95% CI, 74 to 85%) for the detection of proximal DVT. The negative predictive value for AutoDVT was 95% (95% CI, 92 to 98%), with a positive predictive value of 28% (95% CI, 19 to 40%). Overall, 63 out of 294 results (21%; 95% CI, 17 to 27%) were discrepant compared with compression ultrasound.ConclusionsThough AI-guided ultrasound use can detect proximal DVT, test accuracy was not sufficient for this device to be used safely. Further optimization of the software is required prior to use in clinical practice by nonradiology-trained health care professionals. (Funded by the Wellcome Trust [Wellcome Innovator Award 220505/Z/20/Z]. The trial was registered as ISRCTN 11069056.)

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅的又槐发布了新的文献求助200
1秒前
笨笨的怜雪完成签到 ,获得积分10
8秒前
16秒前
云青发布了新的文献求助10
19秒前
小二郎应助伶俐的如松采纳,获得30
27秒前
睡到自然醒完成签到 ,获得积分10
35秒前
0530完成签到,获得积分10
38秒前
云青完成签到,获得积分10
44秒前
cuicy完成签到 ,获得积分10
49秒前
57秒前
322628完成签到,获得积分10
1分钟前
高晓澍完成签到 ,获得积分10
1分钟前
上官若男应助zhangzhuopu采纳,获得10
1分钟前
锦书难托应助地沙坦采纳,获得10
1分钟前
tuanheqi应助地沙坦采纳,获得30
1分钟前
1分钟前
谦让成协发布了新的文献求助10
1分钟前
zhangzhuopu发布了新的文献求助10
1分钟前
1分钟前
伶俐的如松完成签到,获得积分10
1分钟前
1分钟前
老八完成签到,获得积分10
1分钟前
junjun完成签到 ,获得积分10
1分钟前
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
KEHUGE发布了新的文献求助10
1分钟前
Radio应助陶贻亮采纳,获得10
1分钟前
hani完成签到,获得积分10
2分钟前
2分钟前
2分钟前
老迟到的书雁完成签到 ,获得积分20
2分钟前
明钟达完成签到,获得积分10
2分钟前
蔚111完成签到 ,获得积分10
2分钟前
2分钟前
junjun发布了新的文献求助10
2分钟前
Outsider完成签到,获得积分10
2分钟前
敏感的惜文完成签到,获得积分10
2分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
The moderating role of collaborative capacity in the relationship between ecological niche-fitness and innovation investment: an ecosystem perspective 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3369098
求助须知:如何正确求助?哪些是违规求助? 2987951
关于积分的说明 8729377
捐赠科研通 2670648
什么是DOI,文献DOI怎么找? 1463009
科研通“疑难数据库(出版商)”最低求助积分说明 677077
邀请新用户注册赠送积分活动 668248