🔥 科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。详情 📚 中科院2025期刊分区📊 已更新

Towards Hierarchical Temporal Excitation for Video Violence Recognition

计算机科学
作者
Aihua Mao,Wanqing Wu,Wenwei Yan,Yuxiang Li,Haoxiang Wang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tetci.2024.3522201
摘要

Video-based violence recognition has become a crucial research topic with the wide usage of surveillance cameras. However, recognizing violent behavior from video data is challenging because of the additional temporal dimension, the lack of a precise range of violent behavior, and the complex backgrounds that make recognizing the interaction between objects difficult. Previous works have ambiguous reasoning of temporal features and insufficient understanding of action relationships. To address these issues, we propose a hierarchical temporal excitation network, which is effective for learning deep object interactions in spatio-temporal information and utilizing the interaction to robustly identify violent behaviors even in complex scenarios. The model we proposed comprises of two modules for temporal excitation, namely the shift temporal adaptive module (STAM) and the sparse object interaction transformer module (SOI-Tr). STAM extracts coarse-grained temporal information by fusing the shift component with the temporal adaptive modeling component. Furthermore, considering that deep-layer temporal features are more conducive to network understanding, SOI-Tr is introduced to excite fine-grained temporal representation reasoning by critical object attention. We conduct extensive experiments on mainstream violence datasets and a new constructed multi-class violence (MCV) dataset. The results show that our method outperforms the state-of-the-art works and is superior in understanding the object interaction in violent behavior recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨碎寒江发布了新的文献求助10
刚刚
五本笔记关注了科研通微信公众号
1秒前
2秒前
研友_Zeg3VL完成签到,获得积分10
2秒前
2秒前
3秒前
Francis发布了新的文献求助10
4秒前
王金金应助陈无敌采纳,获得10
4秒前
CodeCraft应助zyszys采纳,获得10
5秒前
昏睡的蟠桃应助Zack采纳,获得10
6秒前
mou发布了新的文献求助10
7秒前
Winks完成签到,获得积分10
7秒前
JZ发布了新的文献求助10
7秒前
种草匠完成签到,获得积分10
8秒前
8秒前
9秒前
科研通AI5应助支雨泽采纳,获得10
10秒前
10秒前
10秒前
糖果控发布了新的文献求助10
11秒前
11秒前
12秒前
陈晚拧完成签到 ,获得积分10
12秒前
12秒前
一地狗粮发布了新的文献求助10
12秒前
科研通AI5应助Francis采纳,获得10
12秒前
深情安青应助LX采纳,获得10
12秒前
红炉点血完成签到,获得积分10
14秒前
iu发布了新的文献求助10
14秒前
15秒前
王哪跑12发布了新的文献求助10
15秒前
发飙的牛发布了新的文献求助10
16秒前
16秒前
美少女战士完成签到,获得积分10
16秒前
xuan完成签到,获得积分10
18秒前
科研通AI5应助糖果控采纳,获得10
18秒前
18秒前
ghost4551发布了新的文献求助30
19秒前
西木发布了新的文献求助10
19秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
British Girl Chinese Wife (New World Press, 1985) 800
EEG in clinical practice 2nd edition 1994 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 化学工程 复合材料 基因 遗传学 催化作用 物理化学 细胞生物学 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3605156
求助须知:如何正确求助?哪些是违规求助? 3173081
关于积分的说明 9577505
捐赠科研通 2879231
什么是DOI,文献DOI怎么找? 1581391
邀请新用户注册赠送积分活动 743606
科研通“疑难数据库(出版商)”最低求助积分说明 726063