Computer‐Aided Detection (CADe) and Segmentation Methods for Breast Cancer Using Magnetic Resonance Imaging (MRI)

计算机科学 机器学习 概化理论 人工智能 乳房磁振造影 分割 磁共振成像 乳腺癌 医学物理学 乳腺摄影术 放射科 医学 癌症 数学 统计 内科学
作者
Payam Jannatdoust,Parya Valizadeh,Nikoo Saeedi,Gelareh Valizadeh,Hanieh Mobarak Salari,Hamidreza Saligheh Rad,Masoumeh Gity
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29687
摘要

Breast cancer continues to be a major health concern, and early detection is vital for enhancing survival rates. Magnetic resonance imaging (MRI) is a key tool due to its substantial sensitivity for invasive breast cancers. Computer‐aided detection (CADe) systems enhance the effectiveness of MRI by identifying potential lesions, aiding radiologists in focusing on areas of interest, extracting quantitative features, and integrating with computer‐aided diagnosis (CADx) pipelines. This review aims to provide a comprehensive overview of the current state of CADe systems in breast MRI, focusing on the technical details of pipelines and segmentation models including classical intensity‐based methods, supervised and unsupervised machine learning (ML) approaches, and the latest deep learning (DL) architectures. It highlights recent advancements from traditional algorithms to sophisticated DL models such as U‐Nets, emphasizing CADe implementation of multi‐parametric MRI acquisitions. Despite these advancements, CADe systems face challenges like variable false‐positive and negative rates, complexity in interpreting extensive imaging data, variability in system performance, and lack of large‐scale studies and multicentric models, limiting the generalizability and suitability for clinical implementation. Technical issues, including image artefacts and the need for reproducible and explainable detection algorithms, remain significant hurdles. Future directions emphasize developing more robust and generalizable algorithms, integrating explainable AI to improve transparency and trust among clinicians, developing multi‐purpose AI systems, and incorporating large language models to enhance diagnostic reporting and patient management. Additionally, efforts to standardize and streamline MRI protocols aim to increase accessibility and reduce costs, optimizing the use of CADe systems in clinical practice. Level of Evidence NA Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燕熙完成签到 ,获得积分10
刚刚
悦耳亦云完成签到 ,获得积分10
刚刚
八杯水完成签到,获得积分10
1秒前
LinLin完成签到 ,获得积分10
2秒前
dlm完成签到,获得积分10
2秒前
yuki完成签到 ,获得积分10
2秒前
可爱电源完成签到,获得积分10
2秒前
老八完成签到,获得积分10
2秒前
GAO发布了新的文献求助10
3秒前
yy完成签到 ,获得积分10
4秒前
林子觽完成签到,获得积分10
4秒前
欢呼妙菱完成签到,获得积分10
4秒前
瘦瘦忆南完成签到 ,获得积分20
4秒前
ccc应助翰林采纳,获得10
5秒前
竭缘发布了新的文献求助30
6秒前
自然的哈密瓜完成签到,获得积分10
6秒前
可靠的亦竹完成签到 ,获得积分10
6秒前
annafan应助科研通管家采纳,获得10
7秒前
Suan完成签到,获得积分10
7秒前
kai完成签到,获得积分10
7秒前
鳄鱼队长完成签到,获得积分10
8秒前
harmy完成签到,获得积分10
8秒前
oaixlittle完成签到,获得积分10
8秒前
未改完成签到,获得积分10
8秒前
GAO完成签到,获得积分10
9秒前
hyw完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
Qi完成签到 ,获得积分10
10秒前
Qingcyx完成签到,获得积分10
11秒前
潇洒的凌兰完成签到,获得积分10
12秒前
饿哭了塞完成签到 ,获得积分10
12秒前
13秒前
无辜不言完成签到,获得积分10
14秒前
容珏完成签到,获得积分10
14秒前
zhang发布了新的文献求助10
14秒前
14秒前
辉hui完成签到,获得积分10
14秒前
熊熊爱完成签到,获得积分10
14秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471687
求助须知:如何正确求助?哪些是违规求助? 3064600
关于积分的说明 9089012
捐赠科研通 2755276
什么是DOI,文献DOI怎么找? 1511947
邀请新用户注册赠送积分活动 698621
科研通“疑难数据库(出版商)”最低求助积分说明 698494