亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Neural Networks: A New Frontier in Dental Tissue Regeneration

再生(生物学) 边疆 人工神经网络 组织工程 工程类 计算机科学 人工智能 生物 生物医学工程 地理 细胞生物学 考古
作者
Nurul Hafizah Mohd Nor,Nur Izzati Mansor,Nur Asmadayana Hasim
出处
期刊:Tissue Engineering Part B-reviews [Mary Ann Liebert]
标识
DOI:10.1089/ten.teb.2024.0216
摘要

In the realm of dental tissue regeneration research, various constraints exist such as the potential variance in cell quality, potency arising from differences in donor tissue and tissue microenvironment, the difficulties associated with sustaining long-term and large-scale cell expansion while preserving stemness and therapeutic attributes, as well as the need for extensive investigation into the enduring safety and effectiveness in clinical settings. The adoption of artificial intelligence (AI) technologies has been suggested as a means to tackle these challenges. This is because, tissue regeneration research could be advanced through the use of diagnostic systems that incorporate mining methods such as neural networks (NN), fuzzy, predictive modeling, genetic algorithms, machine learning (ML), cluster analysis, and decision trees. This article seeks to offer foundational insights into a subset of AI referred to as artificial neural networks (ANNs) and assess their potential applications as essential decision-making support tools in the field of dentistry, with a particular focus on tissue engineering research. Although ANNs may initially appear complex and resource intensive, they have proven to be effective in laboratory and therapeutic settings. This expert system can be trained using clinical data alone, enabling their deployment in situations where rule-based decision-making is impractical. As ANNs progress further, it is likely to play a significant role in revolutionizing dental tissue regeneration research, providing promising results in streamlining dental procedures and improving patient outcomes in the clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wxy完成签到,获得积分10
2秒前
wxy发布了新的文献求助10
6秒前
llm发布了新的文献求助10
7秒前
llm完成签到,获得积分10
13秒前
江姜酱先生完成签到 ,获得积分10
34秒前
碧蓝世界完成签到 ,获得积分10
1分钟前
1分钟前
上官若男应助文献嘤采纳,获得10
1分钟前
1分钟前
传奇完成签到 ,获得积分10
1分钟前
HelenZ发布了新的文献求助10
2分钟前
机器猫完成签到,获得积分10
2分钟前
Mufreh发布了新的文献求助200
2分钟前
迷路的台灯完成签到 ,获得积分10
2分钟前
勤劳的冰菱完成签到,获得积分10
3分钟前
3分钟前
文献嘤发布了新的文献求助10
3分钟前
文献嘤完成签到,获得积分10
4分钟前
4分钟前
自信璎关注了科研通微信公众号
4分钟前
qizitan完成签到,获得积分10
4分钟前
三木发布了新的文献求助30
4分钟前
祖宛凝完成签到,获得积分10
4分钟前
4分钟前
祖宛凝发布了新的文献求助10
4分钟前
4分钟前
qizitan发布了新的文献求助10
4分钟前
三木完成签到,获得积分10
4分钟前
4分钟前
4分钟前
自信璎发布了新的文献求助10
5分钟前
大模型应助烧炭匠采纳,获得10
5分钟前
5分钟前
5分钟前
烧炭匠发布了新的文献求助10
5分钟前
烧炭匠完成签到,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Effect of reactor temperature on FCC yield 1700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
Production Logging: Theoretical and Interpretive Elements 555
电解铜箔实用技术手册 540
Organic Synthesis 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3284012
求助须知:如何正确求助?哪些是违规求助? 2921619
关于积分的说明 8406793
捐赠科研通 2593288
什么是DOI,文献DOI怎么找? 1413791
科研通“疑难数据库(出版商)”最低求助积分说明 658596
邀请新用户注册赠送积分活动 640397