DenseKD: Dense Knowledge Distillation by Exploiting Region and Sample Importance

样品(材料) 蒸馏 计算机科学 色谱法 化学
作者
Haonan Zhang,Longjun Liu,Yi Zhang,Xinyu Lei,Fei Hui,Bihan Wen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2025.3525737
摘要

Knowledge distillation (KD) can compress deep neural networks (DNNs) by transferring the knowledge of the redundant teacher model to the resource-friendly student model, where cross-layer KD (CKD) conducts KD between each stage of students and the multiple stages of teachers. However, previous CKD schemes select the coarse-grained stagewise features of teachers to teach students, leading to improper channel alignment. Also, most of these methods conduct uniform distillation for all the knowledge, limiting students to focus more on important knowledge. To address these problems, we propose a dense KD (DenseKD) in this article, dubbed as DenseKD. First, to achieve more accurate feature alignment in CKD, we construct the learnable dense architecture to make each channel of student flexibly capture more diverse channelwise features from teacher. Moreover, we introduce region importance to investigate the region's guiding potential, it distinguishes the influence of different regions by the variation of representations of teacher models. In addition, to make students pay more attention to useful samples in KD, we calculate sample importance by the loss of teacher models. Consistent improvements over state-of-the-art approaches are observed in experiments on multiple vision tasks. For example, in the classification task, DenseKD achieves 72.30% accuracy of ResNet-20 on CIFAR-100, which is higher than the results of previous CKD methods. In addition, in the object detection task, DenseKD gains 2.84% mean average precision (mAP) improvements of Faster R-CNN with ResNet-18 against vanilla KD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何雨洋发布了新的文献求助10
刚刚
疯疯癫癫完成签到 ,获得积分10
刚刚
2秒前
今后应助舒适路人采纳,获得10
2秒前
田様应助ihouming采纳,获得10
3秒前
打打应助踏雪白狼采纳,获得10
4秒前
阿强发布了新的文献求助10
4秒前
徒徒发布了新的文献求助10
4秒前
4秒前
6秒前
6秒前
Alkaid完成签到,获得积分10
6秒前
6秒前
wyx完成签到,获得积分10
8秒前
Hadiya发布了新的文献求助50
8秒前
哈哈哈哈完成签到,获得积分10
8秒前
9秒前
小飞七应助123采纳,获得10
10秒前
10秒前
10秒前
爆米花应助沉默采纳,获得10
10秒前
一个西瓜发布了新的文献求助10
10秒前
轻松的万天完成签到 ,获得积分10
11秒前
善学以致用应助水波潋滟采纳,获得10
11秒前
开心尔云发布了新的文献求助10
12秒前
内向茉莉完成签到,获得积分10
13秒前
李健应助Wo了喝采纳,获得10
13秒前
小葡萄发布了新的文献求助10
13秒前
liuliuliu完成签到,获得积分20
13秒前
15秒前
15秒前
Lucas应助郦稀采纳,获得10
16秒前
17秒前
18秒前
千千完成签到,获得积分10
18秒前
19秒前
Ywr完成签到,获得积分10
19秒前
dj完成签到,获得积分10
19秒前
20秒前
千千发布了新的文献求助10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525771
求助须知:如何正确求助?哪些是违规求助? 3106374
关于积分的说明 9279758
捐赠科研通 2803927
什么是DOI,文献DOI怎么找? 1539092
邀请新用户注册赠送积分活动 716407
科研通“疑难数据库(出版商)”最低求助积分说明 709449