Research on Mine-Personnel Helmet Detection Based on Multi-Strategy-Improved YOLOv11

冗余(工程) 计算机科学 特征(语言学) 块(置换群论) 目标检测 数据挖掘 人工智能 模式识别(心理学) 几何学 数学 语言学 操作系统 哲学
作者
Lei Zhang,Zhipeng Sun,Hai Tao,Meng Wang,Weixun Yi
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:25 (1): 170-170
标识
DOI:10.3390/s25010170
摘要

In the complex environment of fully mechanized mining faces, the current object detection algorithms face significant challenges in achieving optimal accuracy and real-time detection of mine personnel and safety helmets. This difficulty arises from factors such as uneven lighting conditions and equipment obstructions, which often lead to missed detections. Consequently, these limitations pose a considerable challenge to effective mine safety management. This article presents an enhanced algorithm based on YOLOv11n, referred to as GCB-YOLOv11. The proposed improvements are realized through three key aspects: Firstly, the traditional convolution is replaced with GSConv, which significantly enhances feature extraction capabilities while simultaneously reducing computational costs. Secondly, a novel C3K2_FE module was designed that integrates Faster_block and ECA attention mechanisms. This design aims to improve detection accuracy while also accelerating detection speed. Finally, the introduction of the Bi FPN mechanism in the Neck section optimizes the efficiency of multi-scale feature fusion and addresses issues related to feature loss and redundancy. The experimental results demonstrate that GCB-YOLOv11 exhibits strong performance on the dataset concerning mine personnel and safety helmets, achieving a mean average precision of 93.6%. Additionally, the frames per second reached 90.3 f·s−1, representing increases of 3.3% and 9.4%, respectively, compared to the baseline model. In addition, when compared to models such as YOLOv5s, YOLOv8s, YOLOv3 Tiny, Fast R-CNN, and RT-DETR, GCB-YOLOv11 demonstrates superior performance in both detection accuracy and model complexity. This highlights its advantages in mining environments and offers a viable technical solution for enhancing the safety of mine personnel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
请叫我风吹麦浪应助tyughi采纳,获得10
刚刚
ph发布了新的文献求助10
1秒前
顺顺利利发布了新的文献求助10
2秒前
阿拉拉发布了新的文献求助10
2秒前
Sukey完成签到,获得积分10
2秒前
Compro完成签到,获得积分20
2秒前
充电宝应助hehe采纳,获得10
2秒前
凡凡完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
子车茗应助神奇的光子采纳,获得20
8秒前
小悦子完成签到,获得积分10
8秒前
ling2001完成签到,获得积分10
8秒前
9秒前
9秒前
DQ发布了新的文献求助10
9秒前
9秒前
11秒前
12秒前
ym完成签到,获得积分20
12秒前
12秒前
ding发布了新的文献求助10
12秒前
sisii完成签到,获得积分10
12秒前
星辰大海应助科研通管家采纳,获得30
13秒前
13秒前
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得30
14秒前
RAnDw发布了新的文献求助10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
阿秧发布了新的文献求助30
14秒前
ding应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662898
求助须知:如何正确求助?哪些是违规求助? 3223698
关于积分的说明 9752620
捐赠科研通 2933587
什么是DOI,文献DOI怎么找? 1606194
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734775