Discrete element model construction and dehulling simulation verification based on harvested quinoa grains

离散元法 生物系统 数学 近似误差 校准 压缩(物理) 材料科学 算法 模拟 计算机科学 复合材料 结构工程 机械 统计 工程类 物理 生物
作者
Hongbin Bai,Yingsi Wu,Yiming Ma,Dezheng Xuan,Du Wenliang,Fei Liu,Xuan Zhao
出处
期刊:Journal of Food Science [Wiley]
标识
DOI:10.1111/1750-3841.17510
摘要

Abstract The dry dehulling process of quinoa grains faces challenges such as poor visibility and unclear dynamic response characteristics, leading to irrational settings of the shelling process and high losses of the final processed product. Simulation methods provide an effective solution to this issue, with the accuracy of the simulation model being crucial. In this study, using the Experts in Discrete Element Modeling (EDEM) simulation software, based on the biological characteristics and mechanical properties of the grains, a method was proposed to construct a discrete‐element simulation model for the double‐layer bonding of the quinoa grain using the three‐axis spatial coordinates method. The Plackett–Burman method, the steepest rise method and the Box–Behnken method were used to simulate the compression test. The bonding parameters of the quinoa grain were calibrated. The parameters were further validated by constructing a mechanical shear test. Finally, the process of the dehulling quinoa grain was simulated in a dry dehulling equipment. The results showed that the relative error between the simulated and actual maximum compression force of the quinoa grains was 0.32%. The breaking shear force in the simulation had a relative error of no more than 5% compared to the actual measurements. In the simulation, the dehulling rate and broken rice rate were 78.54% and 1.38%, respectively, which exceeded the bench test values (75.32% for dehulling rate and 1.24% for broken rice rate) by 3.22% and 0.14%, respectively. The error was within the acceptable range. The calibration of the discrete element model parameters for quinoa grains was accurate, reflecting the mechanical properties differences between the rice and the pericarp effectively, providing a reliable basis for optimizing the design of dry dehulling mechanisms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助小刘很怕忙采纳,获得10
1秒前
1秒前
米兰完成签到,获得积分10
1秒前
CJN发布了新的文献求助10
1秒前
伞下铭发布了新的文献求助10
2秒前
2秒前
Voyage发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
科研小白完成签到,获得积分10
3秒前
YIZHIZOU发布了新的文献求助10
3秒前
3秒前
4秒前
栗子完成签到,获得积分20
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
faker完成签到,获得积分10
5秒前
yatou完成签到,获得积分10
6秒前
ww发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
syt完成签到 ,获得积分10
7秒前
Criminology34应助李丙首采纳,获得10
7秒前
7秒前
force完成签到 ,获得积分10
8秒前
8秒前
8秒前
yatou发布了新的文献求助10
9秒前
清浅发布了新的文献求助10
9秒前
9秒前
9秒前
子车茗应助LeichterL采纳,获得20
9秒前
小蘑菇应助远方采纳,获得10
10秒前
10秒前
YIZHIZOU完成签到,获得积分20
10秒前
熬夜波比应助虚心的语柔采纳,获得10
10秒前
森林完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006