Association between anthropometric indices and chronic kidney disease: Insights from NHANES 2009–2018

体型指数 全国健康与营养检查调查 人体测量学 腰围 体质指数 医学 混淆 腰高比 肾脏疾病 肥胖 内科学 人口学 肥胖的分类 人口 环境卫生 脂肪团 社会学
作者
Xinyun Chen,Zheng Wu,Xingyu Hou,Wenhui Yu,Chang Gao,Shen‐Ju Gou,Ping Fu
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:20 (2): e0311547-e0311547
标识
DOI:10.1371/journal.pone.0311547
摘要

Introduction The strong association between obesity and chronic kidney disease (CKD) has been empirically validated, yet traditional measures like the Body Mass Index (BMI) fail to accurately assess the extent of obesity due to CKD’s characteristics, such as reduced muscle mass and increased visceral fat. This study investigates the association between CKD and several anthropometric indices, including A Body Shape Index (ABSI), Body Roundness Index (BRI), Waist-to-Height Ratio (WHtR), and the Conicity Index (C-index), to determine their predictive capabilities. Methods Based on the datasets from the National Health and Nutrition Examination Survey (NHANES) 2009–2018, weighted multivariable regression analyses were carried out to examine the independent relationship between two anthropometric indices and CKD. Also, subgroup analyses, restricted cubic spline regression (RCS), and receiver operating characteristic curve analysis were conducted for further data analyses. Results A total of 24,162 participants were enrolled in this study. After adjusting for confounding factors, ABSI, BRI, WHtR, and the C-index were significantly associated with an increased risk of CKD, while BMI was not. Height showed a protective effect against CKD. ABSI and the C-index demonstrated the highest areas under the curve (AUCs), indicating superior predictive capabilities compared to traditional measures like BMI and waist circumference (WC). Subgroup analyses revealed significant interactions between the anthropometric indices and factors such as age, disease status, dietary intake, and physical activity levels. Conclusions This study highlights the significant associations between various anthropometric indices (including ABSI, BRI, WHtR, and C-index) and the risk of CKD. ABSI and the C-index demonstrated the strongest predictive capabilities for CKD, with the highest AUC values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸的凝荷完成签到,获得积分10
1秒前
2秒前
2秒前
周周完成签到,获得积分10
2秒前
协和_子鱼发布了新的文献求助30
2秒前
bkagyin应助YangSihan采纳,获得10
3秒前
徐浩彬发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
魔法披风完成签到,获得积分10
5秒前
zhaotu7314完成签到,获得积分20
6秒前
田様应助ksd798采纳,获得10
6秒前
cracky59发布了新的文献求助10
7秒前
7秒前
莉莉芙完成签到 ,获得积分10
8秒前
小谢不谢完成签到,获得积分10
8秒前
9秒前
zhaotu7314发布了新的文献求助10
9秒前
33333发布了新的文献求助10
9秒前
干雅柏发布了新的文献求助10
11秒前
11秒前
zimi完成签到,获得积分10
12秒前
科研小白发布了新的文献求助10
12秒前
以七完成签到,获得积分10
14秒前
大个应助纪亦竹采纳,获得10
14秒前
zyx发布了新的文献求助10
14秒前
cracky59完成签到,获得积分10
14秒前
niuniu发布了新的文献求助10
15秒前
善学以致用应助gbt采纳,获得10
15秒前
明亮不乐发布了新的文献求助10
16秒前
沉淀体育生完成签到,获得积分10
17秒前
19秒前
19秒前
123完成签到,获得积分10
21秒前
ahaaa完成签到 ,获得积分10
22秒前
24秒前
棣棣完成签到,获得积分10
25秒前
SciGPT应助协和_子鱼采纳,获得10
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736268
求助须知:如何正确求助?哪些是违规求助? 3280052
关于积分的说明 10018450
捐赠科研通 2996653
什么是DOI,文献DOI怎么找? 1644273
邀请新用户注册赠送积分活动 781868
科研通“疑难数据库(出版商)”最低求助积分说明 749548