Machine Learning for Adrenal Gland Segmentation and Classification of Normal and Adrenal Masses at CT

医学 肾上腺 分割 试验装置 数据集 回顾性队列研究 放射科 人工智能 病理 核医学 计算机科学
作者
Cory Robinson-Weiss,Jay Patel,Bernardo C. Bizzo,Daniel I. Glazer,Christopher P. Bridge,Katherine P. Andriole,Borna E. Dabiri,John K. Chin,Keith J. Dreyer,Jayashree Kalpathy–Cramer,William W. Mayo-Smith
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (2) 被引量:8
标识
DOI:10.1148/radiol.220101
摘要

Background Adrenal masses are common, but radiology reporting and recommendations for management can be variable. Purpose To create a machine learning algorithm to segment adrenal glands on contrast-enhanced CT images and classify glands as normal or mass-containing and to assess algorithm performance. Materials and Methods This retrospective study included two groups of contrast-enhanced abdominal CT examinations (development data set and secondary test set). Adrenal glands in the development data set were manually segmented by radiologists. Images in both the development data set and the secondary test set were manually classified as normal or mass-containing. Deep learning segmentation and classification models were trained on the development data set and evaluated on both data sets. Segmentation performance was evaluated with use of the Dice similarity coefficient (DSC), and classification performance with use of sensitivity and specificity. Results The development data set contained 274 CT examinations (251 patients; median age, 61 years; 133 women), and the secondary test set contained 991 CT examinations (991 patients; median age, 62 years; 578 women). The median model DSC on the development test set was 0.80 (IQR, 0.78-0.89) for normal glands and 0.84 (IQR, 0.79-0.90) for adrenal masses. On the development reader set, the median interreader DSC was 0.89 (IQR, 0.78-0.93) for normal glands and 0.89 (IQR, 0.85-0.97) for adrenal masses. Interreader DSC for radiologist manual segmentation did not differ from automated machine segmentation (P = .35). On the development test set, the model had a classification sensitivity of 83% (95% CI: 55, 95) and specificity of 89% (95% CI: 75, 96). On the secondary test set, the model had a classification sensitivity of 69% (95% CI: 58, 79) and specificity of 91% (95% CI: 90, 92). Conclusion A two-stage machine learning pipeline was able to segment the adrenal glands and differentiate normal adrenal glands from those containing masses. © RSNA, 2022 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唠叨的严青完成签到,获得积分10
1秒前
星空发布了新的文献求助30
1秒前
1秒前
阿烨完成签到,获得积分10
1秒前
乌拉乎拉完成签到,获得积分10
2秒前
3秒前
3秒前
小明完成签到,获得积分10
4秒前
zp发布了新的文献求助10
4秒前
小草发布了新的文献求助10
4秒前
121发布了新的文献求助10
4秒前
FashionBoy应助MingqingFang采纳,获得10
6秒前
6秒前
7秒前
星空完成签到,获得积分10
8秒前
灵巧菠萝发布了新的文献求助10
8秒前
俭朴的厉关注了科研通微信公众号
9秒前
10秒前
Juneaper发布了新的文献求助10
10秒前
petiteblanche发布了新的文献求助10
10秒前
汉堡包应助ww采纳,获得30
11秒前
梓泽丘墟应助跪求采纳,获得10
11秒前
GEOPYJ发布了新的文献求助208
11秒前
11秒前
丰富的芯完成签到,获得积分20
11秒前
Jingxia完成签到,获得积分10
12秒前
123发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
15秒前
Onetwothree完成签到 ,获得积分10
15秒前
15秒前
善学以致用应助早早采纳,获得10
17秒前
17秒前
17秒前
彭于晏应助YZZ采纳,获得10
17秒前
bkagyin应助grace采纳,获得10
17秒前
852应助莫若以明采纳,获得10
17秒前
话梅完成签到,获得积分10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152854
求助须知:如何正确求助?哪些是违规求助? 2804064
关于积分的说明 7856939
捐赠科研通 2461847
什么是DOI,文献DOI怎么找? 1310502
科研通“疑难数据库(出版商)”最低求助积分说明 629279
版权声明 601788