Machine Learning for Adrenal Gland Segmentation and Classification of Normal and Adrenal Masses at CT

医学 肾上腺 分割 试验装置 数据集 回顾性队列研究 放射科 人工智能 病理 核医学 计算机科学
作者
Cory Robinson-Weiss,Jay Patel,Bernardo C. Bizzo,Daniel I. Glazer,Christopher P. Bridge,Katherine P. Andriole,Borna E. Dabiri,John K. Chin,Keith J. Dreyer,Jayashree Kalpathy–Cramer,William W. Mayo-Smith
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (2) 被引量:21
标识
DOI:10.1148/radiol.220101
摘要

Background Adrenal masses are common, but radiology reporting and recommendations for management can be variable. Purpose To create a machine learning algorithm to segment adrenal glands on contrast-enhanced CT images and classify glands as normal or mass-containing and to assess algorithm performance. Materials and Methods This retrospective study included two groups of contrast-enhanced abdominal CT examinations (development data set and secondary test set). Adrenal glands in the development data set were manually segmented by radiologists. Images in both the development data set and the secondary test set were manually classified as normal or mass-containing. Deep learning segmentation and classification models were trained on the development data set and evaluated on both data sets. Segmentation performance was evaluated with use of the Dice similarity coefficient (DSC), and classification performance with use of sensitivity and specificity. Results The development data set contained 274 CT examinations (251 patients; median age, 61 years; 133 women), and the secondary test set contained 991 CT examinations (991 patients; median age, 62 years; 578 women). The median model DSC on the development test set was 0.80 (IQR, 0.78-0.89) for normal glands and 0.84 (IQR, 0.79-0.90) for adrenal masses. On the development reader set, the median interreader DSC was 0.89 (IQR, 0.78-0.93) for normal glands and 0.89 (IQR, 0.85-0.97) for adrenal masses. Interreader DSC for radiologist manual segmentation did not differ from automated machine segmentation (
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LLL发布了新的文献求助10
1秒前
3秒前
3秒前
3秒前
之晴发布了新的文献求助10
3秒前
zss发布了新的文献求助10
4秒前
4秒前
524974281完成签到,获得积分10
4秒前
虚幻羊青关注了科研通微信公众号
5秒前
纳纳椰发布了新的文献求助10
5秒前
cureall应助超cute宁采纳,获得30
5秒前
6秒前
crazyant完成签到,获得积分10
6秒前
bkagyin应助hkh采纳,获得10
6秒前
风起青禾发布了新的文献求助10
6秒前
6秒前
典雅葶完成签到 ,获得积分10
6秒前
nulinuli完成签到 ,获得积分10
7秒前
AHR发布了新的文献求助10
7秒前
星辰大海应助huazhenzhen采纳,获得20
8秒前
可靠的傲儿完成签到,获得积分10
8秒前
greeeetwist完成签到,获得积分10
9秒前
Sue发布了新的文献求助10
9秒前
今天也要开心Y完成签到,获得积分10
10秒前
虚幻的彤发布了新的文献求助10
11秒前
贰鸟应助乔er一采纳,获得10
11秒前
12秒前
12秒前
zss完成签到,获得积分10
12秒前
WIsh完成签到 ,获得积分10
13秒前
纳纳椰完成签到,获得积分10
13秒前
15秒前
Fanbio完成签到 ,获得积分10
15秒前
新新发布了新的文献求助30
15秒前
超帅连虎发布了新的文献求助10
15秒前
犇骉发布了新的文献求助10
16秒前
ff完成签到 ,获得积分10
17秒前
LaTeXer应助Pam采纳,获得200
17秒前
Niki完成签到,获得积分10
17秒前
玩命的朋友完成签到,获得积分10
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961408
求助须知:如何正确求助?哪些是违规求助? 3507744
关于积分的说明 11137921
捐赠科研通 3240204
什么是DOI,文献DOI怎么找? 1790848
邀请新用户注册赠送积分活动 872587
科研通“疑难数据库(出版商)”最低求助积分说明 803288