Tourists’ post-adoption continuance intentions of chatbots: integrating task–technology fit model and expectation–confirmation theory

聊天机器人 连续性 任务(项目管理) 背景(考古学) 独创性 服务(商务) 结构方程建模 计算机科学 营销 构造(python库) 知识管理 心理学 业务 社会心理学 人工智能 经济 管理 程序设计语言 古生物学 机器学习 生物 创造力
作者
Neeraj Dhiman,Mohit Jamwal
出处
期刊:Foresight [Emerald (MCB UP)]
卷期号:25 (2): 209-224 被引量:3
标识
DOI:10.1108/fs-10-2021-0207
摘要

Purpose Despite the proliferation of service chatbots in the tourism industry, the question on its continuance intentions among customers has largely remain unanswered. Building on an integrated framework using the task–technology fit theory (TTF) and the expectation–confirmation model (ECM), the present study aims to settle this debate by investigating the factors triggering customers to continue to use chatbots in a travel planning context. Design/methodology/approach The research followed a quantitative approach in which a survey of 322 chatbot users was undertaken. The model was empirically validated using the structural equation modelling approach using AMOS. Findings The results reveal that users’ expectations are confirmed when they believe that the technological characteristics of chatbots satisfy their task-related characteristics. Simply, the results reveal a significant and direct effect of TTF on customers’ confirmation and perceived usefulness towards chatbots. Moreover, perceived usefulness and confirmation were found to positively impact customers’ satisfaction towards chatbots, in which the former exerts a relatively stronger impact. Not surprisingly, customers’ satisfaction with the artificial intelligence(AI)-based chatbots emerged as a predominant predictor of their continuance use. Practical implications The findings have various practical ramifications for developers who must train chatbot algorithms on massive data to increase their accuracy and to answer more exhaustive inquiries, thereby generating a task–technology fit. It is recommended that service providers give consumers hassle-free service and precise answers to their inquiries to guarantee their satisfaction. Originality/value The present work attempted to empirically construct and evaluate the combination of the TTF model and the ECM, which is unique in the AI-based chatbots available in a tourism context. This research presents an alternate method for understanding the continuance intentions concerning AI-based service chatbots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
COC完成签到,获得积分10
2秒前
2秒前
Changlu完成签到,获得积分10
3秒前
上官若男应助KXX采纳,获得10
3秒前
3秒前
我是鸡汤发布了新的文献求助10
3秒前
mmol发布了新的文献求助10
3秒前
5秒前
qinjiehm完成签到,获得积分10
5秒前
可爱的函函应助liusui采纳,获得10
6秒前
会翻滚的水晶帝王皮皮虾关注了科研通微信公众号
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
张姚发布了新的文献求助10
7秒前
8秒前
山谷110发布了新的文献求助10
9秒前
hui发布了新的文献求助10
9秒前
发一篇sci发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
TOMMY233发布了新的文献求助10
11秒前
传奇3应助wonderfulwisdom采纳,获得10
11秒前
Akim应助Plant37采纳,获得10
12秒前
Jupiter完成签到,获得积分10
12秒前
12秒前
12秒前
KXX发布了新的文献求助10
13秒前
13秒前
飘逸问薇发布了新的文献求助10
13秒前
斯文败类应助黄婷采纳,获得10
14秒前
gwq发布了新的文献求助10
14秒前
斯文败类应助让我看看采纳,获得10
14秒前
15秒前
疯狂的石头完成签到,获得积分20
15秒前
科研通AI2S应助liusui采纳,获得10
16秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128715
求助须知:如何正确求助?哪些是违规求助? 2779520
关于积分的说明 7743611
捐赠科研通 2434839
什么是DOI,文献DOI怎么找? 1293652
科研通“疑难数据库(出版商)”最低求助积分说明 623388
版权声明 600514