Framework of Data Acquisition and Integration for the Detection of Pavement Distress via Multiple Vehicles

数据收集 聚类分析 过程(计算) 加速度计 计算机科学 实时计算 移动地图 工程类 数据挖掘 人工智能 点云 数学 统计 操作系统
作者
Jinwoo Jang,Yong Yang,Andrew W. Smyth,Dave Cavalcanti,Rohit Kumar
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:31 (2) 被引量:19
标识
DOI:10.1061/(asce)cp.1943-5487.0000618
摘要

Street defects, such as potholes and sunken manholes, in general develop quickly compared to other pavement distresses, such as cracking and rutting. Those street defects can result in vehicle damage. This paper proposes an automated and innovative method to obtain up-to-date information about those street defects with the use of a mobile data collection kit mounted on vehicles. In each mobile data collection kit, a triaxial accelerometer and global positioning system sensor collect data for the detection of street defects. A local algorithm is embedded in the mobile data collection kit to increase the efficiency of a local data logging process and to perform a preliminary detection of street defects. At a back-end server, a more precise street defect detection algorithm enhances the performance of the proposed monitoring system by integrating data collected from multiple sensor-equipped vehicles. The street defect detection algorithm at the back-end server relies on a supervised machine learning technique and a trajectory clustering algorithm. The framework of the data collection and integration is developed for the detection of isolated street defects and rough road conditions. The potential of detecting these conditions based on the dynamic responses of vehicles using machine learning techniques is investigated on real road conditions. The preliminary ratings for pavement distress are calculated by integrating the three classification results. Road networks that have isolated street defects and rough road surfaces are identified and visualized on an online map. The proposed system is of practical importance since it provides continuous information about road conditions, which can be valuable for pavement management systems and public safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Eliauk完成签到 ,获得积分10
1秒前
1秒前
Jennie发布了新的文献求助50
2秒前
4秒前
4秒前
4秒前
qqq发布了新的文献求助10
4秒前
深情安青应助文静冰海采纳,获得10
5秒前
蒋三毒发布了新的文献求助10
5秒前
5秒前
小马甲应助高高采纳,获得10
6秒前
6秒前
ding应助sunidea采纳,获得10
7秒前
8秒前
8秒前
9秒前
cjj给cjj的求助进行了留言
9秒前
欢喜夏兰完成签到,获得积分10
10秒前
10秒前
勤恳的皮卡丘完成签到,获得积分10
10秒前
无可无不可完成签到,获得积分10
11秒前
11秒前
11秒前
踏雪寻梅发布了新的文献求助10
11秒前
可靠往事应助昆仑山吴某采纳,获得20
12秒前
12秒前
12秒前
12秒前
13秒前
程程发布了新的文献求助10
13秒前
飞飞发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
asule13完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
WWW发布了新的文献求助10
17秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128715
求助须知:如何正确求助?哪些是违规求助? 2779520
关于积分的说明 7743611
捐赠科研通 2434839
什么是DOI,文献DOI怎么找? 1293652
科研通“疑难数据库(出版商)”最低求助积分说明 623388
版权声明 600514