亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Framework of Data Acquisition and Integration for the Detection of Pavement Distress via Multiple Vehicles

数据收集 聚类分析 过程(计算) 加速度计 计算机科学 实时计算 移动地图 工程类 数据挖掘 人工智能 点云 数学 统计 操作系统
作者
Jinwoo Jang,Yong Yang,Andrew W. Smyth,Dave Cavalcanti,Rohit Kumar
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:31 (2) 被引量:19
标识
DOI:10.1061/(asce)cp.1943-5487.0000618
摘要

Street defects, such as potholes and sunken manholes, in general develop quickly compared to other pavement distresses, such as cracking and rutting. Those street defects can result in vehicle damage. This paper proposes an automated and innovative method to obtain up-to-date information about those street defects with the use of a mobile data collection kit mounted on vehicles. In each mobile data collection kit, a triaxial accelerometer and global positioning system sensor collect data for the detection of street defects. A local algorithm is embedded in the mobile data collection kit to increase the efficiency of a local data logging process and to perform a preliminary detection of street defects. At a back-end server, a more precise street defect detection algorithm enhances the performance of the proposed monitoring system by integrating data collected from multiple sensor-equipped vehicles. The street defect detection algorithm at the back-end server relies on a supervised machine learning technique and a trajectory clustering algorithm. The framework of the data collection and integration is developed for the detection of isolated street defects and rough road conditions. The potential of detecting these conditions based on the dynamic responses of vehicles using machine learning techniques is investigated on real road conditions. The preliminary ratings for pavement distress are calculated by integrating the three classification results. Road networks that have isolated street defects and rough road surfaces are identified and visualized on an online map. The proposed system is of practical importance since it provides continuous information about road conditions, which can be valuable for pavement management systems and public safety.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6.1应助jy采纳,获得10
4秒前
无私匕完成签到,获得积分10
5秒前
6秒前
16秒前
17秒前
21秒前
jy发布了新的文献求助10
23秒前
嘻嘻哈哈完成签到,获得积分10
30秒前
38秒前
38秒前
38秒前
38秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
领导范儿应助Elen1987采纳,获得10
43秒前
44秒前
科研通AI6.1应助jy采纳,获得10
56秒前
57秒前
1分钟前
Lucas应助KKLUV采纳,获得10
1分钟前
1分钟前
jy发布了新的文献求助10
1分钟前
1分钟前
伊力扎提完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
孙泉发布了新的文献求助10
1分钟前
1分钟前
1分钟前
852应助zslg采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
zslg发布了新的文献求助10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732308
求助须知:如何正确求助?哪些是违规求助? 5338178
关于积分的说明 15322147
捐赠科研通 4877945
什么是DOI,文献DOI怎么找? 2620761
邀请新用户注册赠送积分活动 1569978
关于科研通互助平台的介绍 1526615