佩多:嘘
材料科学
钙钛矿(结构)
串联
光电子学
电极
能量转换效率
化学工程
纳米技术
图层(电子)
复合材料
化学
工程类
物理化学
作者
Dávid Forgács,Lidón Gil‐Escrig,Daniel Pérez‐del‐Rey,Cristina Momblona,Jérémie Werner,Bjoern Niesen,Christophe Ballif,Michele Sessolo,Henk J. Bolink
标识
DOI:10.1002/aenm.201602121
摘要
Thin-film solar cells suffer from various types of recombination, of which leakage current usually dominates at lower voltages. Herein, we demonstrate first a three-order reduction of the shunt loss mechanism in planar methylammonium lead iodide perovskite solar cells by replacing the commonly used hole transport layer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with a better hole-selective polyarylamine. As a result, these cells exhibit superior operation under reduced light conditions, which we demonstrate for the extreme case of moonlight irradiance, at which open-circuit voltages of 530 mV can still be obtained. By the shunt removal we also observe the VOC to drop to zero after as long as 2 h after the light has been switched off. Second, at higher illumination intensities the dominant losses in the PEDOT:PSS-based cell are ascribed to surface recombination and are also proven to be substantially minimized by instead employing the polyarylamine. We attribute the reduced shunt and surface recombination to the far better suited semiconductor character of the polyarylamine, compared to that of PEDOT:PSS, efficiently blocking electrons from recombining at this electrode.
科研通智能强力驱动
Strongly Powered by AbleSci AI