Learning from class-imbalanced data: Review of methods and applications

计算机科学 班级(哲学) 预处理器 数据科学 机器学习 人工智能 任务(项目管理) 透视图(图形) 分类学(生物学) 事件(粒子物理) 数据预处理 罕见事件 量子力学 生物 统计 植物 物理 经济 管理 数学
作者
Haixiang Guo,Yijing Li,Jennifer Shang,Mingyun Gu,Yuanyue Huang,Bing Gong
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:73: 220-239 被引量:1897
标识
DOI:10.1016/j.eswa.2016.12.035
摘要

Rare events, especially those that could potentially negatively impact society, often require humans’ decision-making responses. Detecting rare events can be viewed as a prediction task in data mining and machine learning communities. As these events are rarely observed in daily life, the prediction task suffers from a lack of balanced data. In this paper, we provide an in depth review of rare event detection from an imbalanced learning perspective. Five hundred and seventeen related papers that have been published in the past decade were collected for the study. The initial statistics suggested that rare events detection and imbalanced learning are concerned across a wide range of research areas from management science to engineering. We reviewed all collected papers from both a technical and a practical point of view. Modeling methods discussed include techniques such as data preprocessing, classification algorithms and model evaluation. For applications, we first provide a comprehensive taxonomy of the existing application domains of imbalanced learning, and then we detail the applications for each category. Finally, some suggestions from the reviewed papers are incorporated with our experiences and judgments to offer further research directions for the imbalanced learning and rare event detection fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
111发布了新的文献求助10
1秒前
咸鱼完成签到,获得积分10
1秒前
元寄灵发布了新的文献求助10
1秒前
dreamer完成签到,获得积分10
3秒前
3秒前
言辞完成签到,获得积分10
4秒前
4秒前
安详香岚发布了新的文献求助10
4秒前
Andy完成签到,获得积分10
6秒前
111完成签到,获得积分10
6秒前
water发布了新的文献求助20
6秒前
hhhhhhhhh发布了新的文献求助10
7秒前
7秒前
落落发布了新的文献求助10
7秒前
Tong完成签到,获得积分10
8秒前
Foch发布了新的文献求助10
9秒前
小雒雒完成签到,获得积分20
9秒前
九月鹰飞完成签到,获得积分10
11秒前
11秒前
明天见发布了新的文献求助10
12秒前
丰富完成签到,获得积分10
13秒前
小二郎应助Archer采纳,获得10
14秒前
15秒前
雪儿完成签到,获得积分10
15秒前
要减肥向日葵完成签到,获得积分10
15秒前
领导范儿应助啦啦啦采纳,获得10
15秒前
16秒前
17秒前
无奈的代珊完成签到 ,获得积分10
17秒前
18秒前
追寻的筝完成签到,获得积分20
18秒前
19秒前
19秒前
淡然的铭发布了新的文献求助10
19秒前
20秒前
鑫叶完成签到,获得积分10
20秒前
21秒前
21秒前
SYLH应助西瓜二郎采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969557
求助须知:如何正确求助?哪些是违规求助? 3514377
关于积分的说明 11173836
捐赠科研通 3249692
什么是DOI,文献DOI怎么找? 1794979
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804836