化学毒性
生物信息学
毒性
计算机科学
贝叶斯概率
机器学习
人工智能
化学
生物化学
基因
有机化学
作者
Jing Lu,Pin Zhang,Xiaowen Zou,Xiaoqiang Zhao,Keguang Cheng,Yi‐Lei Zhao,Yi Bi,Mingyue Zheng,Xiaomin Luo
出处
期刊:Combinatorial Chemistry & High Throughput Screening
[Bentham Science]
日期:2017-02-23
卷期号:20 (4)
被引量:10
标识
DOI:10.2174/1386207320666170217151826
摘要
Background: Chemical toxicity is an important reason for late-stage failure in drug R&D. However, it is time-consuming and expensive to identify the multiple toxicities of compounds using the traditional experiments. Thus, it is attractive to build an accurate prediction model for the toxicity profile of compounds. Keywords: Toxicity profile, Local lazy learning, ECFP_4, Laplacian-modified Bayesian.
科研通智能强力驱动
Strongly Powered by AbleSci AI