The Immunopathophysiology of Endometriosis

子宫内膜异位症 医学 免疫系统 免疫失调 免疫学 病理
作者
Lindsey K. Symons,Jessica E. Miller,Vanessa R. Kay,Ryan M. Marks,Kiera Liblik,Madhuri Koti,Chandrakant Tayade
出处
期刊:Trends in Molecular Medicine [Elsevier]
卷期号:24 (9): 748-762 被引量:457
标识
DOI:10.1016/j.molmed.2018.07.004
摘要

Immunological dysfunction, involving defective immunosurveillance against autologous tissue deposited in the peritoneal cavity, facilitates endometriotic lesion growth in endometriosis patients and ultimately perpetuates disease symptoms. Conversely, innate and adaptive immune cells from endometriosis patients produce several proinflammatory and blood vessel growth-promoting factors that contribute to hallmarks of disease pathophysiology. Persistent and prolonged endometriosis-associated inflammation further contributes to comorbidities. Recent studies suggest that endometriotic lesions harbor a unique microenvironment. The interplay between immune cells with stromal and epithelial compartments of lesions is regulated by hormonal pathways. Targeting dysregulated immune pathways represents a potential avenue for novel therapeutic development that will hopefully not impact fertility. Endometriosis is a chronic, inflammatory, estrogen-dependent disease characterized by the growth of endometrial tissue outside of the uterine cavity. Although the etiology of endometriosis remains elusive, immunological dysfunction has been proposed as a critical facilitator of ectopic lesion growth following retrograde menstruation of endometrial debris. However, it is not clear whether this immune dysfunction is a cause or consequence of endometriosis. Thus, here we provide in-depth insights into our current understanding of the immunopathophysiology of endometriosis and highlight challenges and opportunities for future research. With the explosion of successful immune-based therapies targeting various chronic inflammatory conditions, it is crucial to determine whether immune dysfunction can be therapeutically targeted in endometriosis. Endometriosis is a chronic, inflammatory, estrogen-dependent disease characterized by the growth of endometrial tissue outside of the uterine cavity. Although the etiology of endometriosis remains elusive, immunological dysfunction has been proposed as a critical facilitator of ectopic lesion growth following retrograde menstruation of endometrial debris. However, it is not clear whether this immune dysfunction is a cause or consequence of endometriosis. Thus, here we provide in-depth insights into our current understanding of the immunopathophysiology of endometriosis and highlight challenges and opportunities for future research. With the explosion of successful immune-based therapies targeting various chronic inflammatory conditions, it is crucial to determine whether immune dysfunction can be therapeutically targeted in endometriosis. arm of the immune system consisting of T and B lymphocytes that is highly specific and responsible for immunological memory. type of macrophage involved in wound healing and tissue repair that is activated by exposure to certain cytokines such as IL-4, IL-10, or IL-13. the development of new blood vessels from pre-existing vessels through sprouting or intussusception. Angiogenic growth factors include the vascular endothelial growth factor (VEGF) family, angiopoietins (Ang 1/2), fibroblast growth factor (FGF), platelet-derived growth factor-B (PDGF-B), cytokines, and chemokines. also known as an immunoglobulin, is a protein produced by a class of activated B cells called plasma cells of the immune system. These antibodies bind and neutralize antigens to remove them from the body. cells of the humoral adaptive immune system responsible for mediating the production of antibodies. class of cytokine proteins that are responsible for immune cell migration. type of macrophage that produces high levels of proinflammatory cytokines, mediates resistance to pathogens, and produces reactive nitrogen and oxygen intermediates. Interferon gamma and lipopolysaccharide (LPS) polarize macrophages toward the M1 phenotype. small proteins involved in signaling between cells and regulation of immune responses. host biomolecules that act as endogenous danger signals or alarmins to initiate or perpetuate the inflammatory response. innate immune cells that function to sample antigens within the surrounding environment and coordinate subsequent immune responses. DCs process and present antigens to naïve T cells, thereby providing an essential link between the innate and adaptive arms of the immune system. model of endometriosis in non-human primates in which an experimentally induced narrowing or obstruction of the cervix hinders the passage of menstrual debris between the uterus and vaginal canal. This results in increased retrograde menstruation and subsequent development of endometriotic lesions within the peritoneal cavity. a group of cytokines produced and secreted by a variety of lymphoid and non-lymphoid cells that are involved in inflammation and immune system regulation. critical sensor of the innate immune system that when activated, promotes caspase-1-mediated cleavage of the precursor cytokines pro-IL-1β and pro-IL-18 into their bioactive and proinflammatory forms. comprised of cells and pathways that provide a first line of defense against exogenous or endogenous danger signals. Innate immune responses are rapid and nonspecific in nature. a specialized innate phagocytic cell that plays an essential role in the clearance of cellular debris as well as in the release of both inflammatory and chemotactic immune effector molecules. lymphocytes with both innate and adaptive immune features. These cells possess constitutive cytotoxic and cytokine-producing abilities and can participate in rapid response to viral-infected cells and tumor immunosurveillance. short-lived innate immune cells that contain cytoplasmic granules and are rapidly recruited to sites of infection. Recent evidence has revealed emerging roles for neutrophils in cancer and chronic inflammatory conditions. CD4+ immune cells that express the IL-2 receptor alpha chain (CD25) and the transcription factor forkhead box protein P3 (FOXP3). Tregs function to regulate or suppress other cells of the immune system to control the immune response to self and foreign antigens. the flow of menstrual fluid backwards through the fallopian tubes into the peritoneal cavity instead of out of the body. adaptive immune cells responsible for cell-mediated immunity. These cells can recognize foreign antigens by specific cell surface receptors and release cytokines. T cells are further divided into subsets according to their function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkk完成签到,获得积分10
1秒前
他们叫我小伟完成签到 ,获得积分10
2秒前
HAL9000完成签到,获得积分10
4秒前
戴衡霞完成签到,获得积分10
4秒前
6秒前
i羽翼深蓝i完成签到,获得积分10
7秒前
cappuccino完成签到 ,获得积分10
8秒前
霸气曼雁发布了新的文献求助10
8秒前
江渡发布了新的文献求助10
12秒前
佰斯特威应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
水文新绿微应助白昼采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
Stella应助科研通管家采纳,获得30
13秒前
李健应助科研通管家采纳,获得20
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
风中冰香应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
Brian完成签到,获得积分10
13秒前
佰斯特威应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
orixero应助科研通管家采纳,获得10
14秒前
14秒前
超帅的开山完成签到 ,获得积分10
16秒前
浩浩完成签到 ,获得积分10
17秒前
吴坤发布了新的文献求助10
18秒前
危机的慕卉完成签到 ,获得积分10
19秒前
别致的小五完成签到 ,获得积分10
22秒前
温文尔雅完成签到,获得积分10
24秒前
大力向南完成签到,获得积分10
25秒前
笨笨听枫完成签到 ,获得积分10
25秒前
眭超阳完成签到 ,获得积分10
25秒前
ho发布了新的文献求助30
26秒前
愉快的丹彤完成签到 ,获得积分10
28秒前
科研通AI6应助chennapx采纳,获得10
29秒前
JevonCheung完成签到 ,获得积分0
30秒前
尤瑟夫完成签到 ,获得积分10
32秒前
所爱皆在完成签到 ,获得积分10
34秒前
完美的冬灵完成签到 ,获得积分10
34秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378458
求助须知:如何正确求助?哪些是违规求助? 4502884
关于积分的说明 14014658
捐赠科研通 4411499
什么是DOI,文献DOI怎么找? 2423316
邀请新用户注册赠送积分活动 1416206
关于科研通互助平台的介绍 1393644