有界函数
缩放比例
非线性系统
趋化性
空格(标点符号)
期限(时间)
数学分析
反应扩散系统
物理
类型(生物学)
扩散
数学
应用数学
几何学
计算机科学
热力学
化学
受体
生物
操作系统
量子力学
生物化学
生态学
作者
Shen Bian,Li Chen,Evangelos Latos
摘要
This paper deals with a parabolic-elliptic chemotaxis system with nonlocal type of source in the whole space. It's proved that the initial value problem possesses a unique global solution which is uniformly bounded. Here we identify the exponents regimes of nonlinear reaction and aggregation in such a way that their scaling and the diffusion term coincide (see Introduction). Comparing to the classical KS model (without the source term), it's shown that how energy estimates give natural conditions on the nonlinearities implying the absence of blow-up for the solution without any restriction on the initial data.
科研通智能强力驱动
Strongly Powered by AbleSci AI