Fully Convolutional Networks for Multisource Building Extraction From an Open Aerial and Satellite Imagery Data Set

计算机科学 数据集 卷积神经网络 人工智能 集合(抽象数据类型) 遥感 一般化 航空影像 分割 光栅图形 深度学习 卫星图像 参考数据 数据挖掘 模式识别(心理学) 图像(数学) 地理 数学 数学分析 程序设计语言
作者
Shunping Ji,Shiqing Wei,Meng Lü
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (1): 574-586 被引量:1035
标识
DOI:10.1109/tgrs.2018.2858817
摘要

The application of the convolutional neural network has shown to greatly improve the accuracy of building extraction from remote sensing imagery. In this paper, we created and made open a high-quality multisource data set for building detection, evaluated the accuracy obtained in most recent studies on the data set, demonstrated the use of our data set, and proposed a Siamese fully convolutional network model that obtained better segmentation accuracy. The building data set that we created contains not only aerial images but also satellite images covering 1000 km 2 with both raster labels and vector maps. The accuracy of applying the same methodology to our aerial data set outperformed several other open building data sets. On the aerial data set, we gave a thorough evaluation and comparison of most recent deep learning-based methods, and proposed a Siamese U-Net with shared weights in two branches, and original images and their down-sampled counterparts as inputs, which significantly improves the segmentation accuracy, especially for large buildings. For multisource building extraction, the generalization ability is further evaluated and extended by applying a radiometric augmentation strategy to transfer pretrained models on the aerial data set to the satellite data set. The designed experiments indicate our data set is accurate and can serve multiple purposes including building instance segmentation and change detection; our result shows the Siamese U-Net outperforms current building extraction methods and could provide valuable reference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lishan完成签到,获得积分10
1秒前
Dalia完成签到,获得积分10
1秒前
阿嘎普莱特完成签到,获得积分10
2秒前
3秒前
zlx完成签到,获得积分10
3秒前
4秒前
大强完成签到,获得积分10
6秒前
次奥发布了新的文献求助10
6秒前
6秒前
南风上北山完成签到,获得积分10
6秒前
7秒前
阿六儿完成签到,获得积分10
8秒前
陈泽宇发布了新的文献求助10
10秒前
13秒前
14秒前
15秒前
勤恳化蛹完成签到 ,获得积分10
16秒前
陈泽宇完成签到,获得积分10
16秒前
yang1993发布了新的文献求助10
17秒前
Orange应助学术rookie采纳,获得10
17秒前
果冻木鱼完成签到,获得积分10
17秒前
17秒前
18秒前
隐形曼青应助星陨采纳,获得10
19秒前
怕黑凝天完成签到,获得积分10
19秒前
心如止水发布了新的文献求助50
20秒前
22秒前
大模型应助wangting采纳,获得10
22秒前
老黑完成签到,获得积分10
24秒前
Leo发布了新的文献求助10
25秒前
香蕉觅云应助ddd采纳,获得10
25秒前
chenxiu发布了新的文献求助10
27秒前
大个应助yule采纳,获得10
27秒前
27秒前
有丝分裂吉完成签到,获得积分10
28秒前
29秒前
我是老大应助AME采纳,获得10
29秒前
王十二完成签到,获得积分10
29秒前
Leo完成签到,获得积分10
30秒前
田様应助自然芙采纳,获得10
31秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3057507
求助须知:如何正确求助?哪些是违规求助? 2713919
关于积分的说明 7438319
捐赠科研通 2359130
什么是DOI,文献DOI怎么找? 1249728
科研通“疑难数据库(出版商)”最低求助积分说明 607254
版权声明 596328