A Novel Technique to Detect Caries Lesion Using Isophote Concepts

病变 人工智能 分割 计算机科学 医学 牙科 深度学习 口腔正畸科 计算机视觉 模式识别(心理学) 病理
作者
S. C. Datta,Nabendu Chaki,Biswajit Modak
出处
期刊:Irbm [Elsevier BV]
卷期号:40 (3): 174-182 被引量:26
标识
DOI:10.1016/j.irbm.2019.04.001
摘要

Dental caries is one of the most common painful and infectious oral diseases. Early detection of caries lesion prevents the spreading of infection. Generally, dentists use x-ray images to locate the lesion's position. Dental x-ray images have poor intensity which results difficulties in finding exact affected area at a glance. Due to scarcity of dentists at government hospital, it becomes very difficult for the dentists to treat large number of patients in a short span of time. The objective of this work is to design a system to assist dentists to detect caries lesion quickly and more accurately. Deep learning based method is not suitable for this application because there is not enough training set is available to prepare the pre-trained model properly for deep learning. Traditional handcrafted method is desirable for such situation. Dental x-ray not only contains the image of teeth and bonny structure of the jaws but also the tissues within the gum regions. So normal texture based segmentation is not enough to detect the caries lesion. In x-ray, caries lesion looks like a catchment basin, in which the depth at the center is maximum. Isophote along with geodesic active contour method is suitable to model such property of caries lesion. But prior to that multistage background elimination is essential to locate the suspected caries region. Ramdomness calculation and rescaling of that value on the basis of a small training data set is the first part of this multi stage background elimination process. Initial background elimination is performed on the basis of modified k-means clustering upon the entropy value and gray scale values of the x-ray image. In this clustering technique the number of cluster is determined automatically based on analyzing the distribution of data points. The clustering technique is immune against over clustering. Most of the caries lesion lies within the teeth region. Hence this region is surrounded by teeth region. This property is also checked to detect the suspected caries lesion and eliminate the background. Till now very limited dental x-ray databases with caries lesion is available online. ‘Digital dental periapical x-ray database for caries screening’ dataset is used to test the method. The proposed method achieved overall 94% of accuracy and average computational time is below 4.5 sec. This is an alternate solution to detect ROI when deep learning technique fails due to lack of exhaustive training set. This approach fails to generate correct result if resolution of the x-ray image is very low. Low resolution images make confusion between randomness and noise. In addition to that catchment basin properties are not identified properly. Due to this carries lesion are not properly identified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助张国麒采纳,获得10
刚刚
1秒前
可爱的函函应助秋心泉采纳,获得10
2秒前
2秒前
Elesis发布了新的文献求助10
4秒前
4秒前
海森堡完成签到,获得积分10
5秒前
面包小狗完成签到,获得积分10
5秒前
milkdrink发布了新的文献求助10
5秒前
kzn完成签到,获得积分10
5秒前
Zo完成签到,获得积分10
5秒前
水告发布了新的文献求助10
6秒前
6秒前
fantexi113发布了新的文献求助10
6秒前
大桶水果茶完成签到,获得积分10
6秒前
无敌大忽悠完成签到,获得积分10
6秒前
斯文败类应助li采纳,获得10
7秒前
小新完成签到,获得积分10
7秒前
wang@163.com完成签到,获得积分20
8秒前
9秒前
9秒前
9秒前
充电宝应助沉默靳采纳,获得10
9秒前
我是一片云完成签到,获得积分10
10秒前
SciGPT应助群山采纳,获得10
10秒前
冷酷鹤轩发布了新的文献求助10
10秒前
dax大雄完成签到 ,获得积分10
10秒前
SciGPT应助白昼采纳,获得10
11秒前
灵山剑侠发布了新的文献求助10
11秒前
Eins完成签到,获得积分10
12秒前
12秒前
罗海艳完成签到,获得积分20
12秒前
13秒前
yiya完成签到,获得积分10
13秒前
面包小狗发布了新的文献求助10
13秒前
MrFamous发布了新的文献求助10
14秒前
god完成签到,获得积分20
14秒前
善良的亦丝完成签到,获得积分10
15秒前
yls完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5111733
求助须知:如何正确求助?哪些是违规求助? 4319895
关于积分的说明 13460131
捐赠科研通 4150717
什么是DOI,文献DOI怎么找? 2274399
邀请新用户注册赠送积分活动 1276292
关于科研通互助平台的介绍 1214447