Electrochemistry of Atomically Precise Metal Nanoclusters

纳米团簇 材料科学 纳米技术 纳米颗粒 电化学 电催化剂 金属 密度泛函理论 化学物理 化学 物理化学 计算化学 电极 冶金
作者
Kyuju Kwak,Dongil Lee
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:52 (1): 12-22 被引量:320
标识
DOI:10.1021/acs.accounts.8b00379
摘要

Thiolate-protected metal nanoparticles containing a few to few hundred metal atoms are interesting materials exhibiting unique physicochemical properties. They encompass the bulk-to-molecule transition region, where discrete electronic states emerge and electronic band energetics yield to quantum confinement effects. Recent progresses in the synthesis and characterization of ultrasmall gold nanoparticles have opened up new avenues for the isolation of extremely monodispersed nanoparticles with atomically precision. These nanoparticles are also called nanoclusters to distinguish them from other regular metal nanoparticles with core diameter >2 nm. These nanoclusters are typically identified by their actual molecular formulas; prominent among these are Au25(SR)18, Au38(SR)24, and Au102(SR)44, where SR is organothiolate. A number of single crystal structures of these nanoclusters have been disclosed. Researchers have effectively utilized density functional theory (DFT) calculations to predict their atomic and electronic structures, as well as their physicochemical properties. The atomically precise metal nanoclusters have been the focus of recent studies owing to their novel size-specific electrochemical, optical, and catalytic properties. In this Account, we highlight recent advances in electrochemistry of atomically precise metal nanoclusters and their applications in electrocatalysis and electrochemical sensing. Compared with gold nanoclusters, much less progress has been made in the electrochemical studies of other metal nanoclusters, and thus, we mainly focus on the electrochemistry and electrochemical applications of gold-based nanoclusters. Voltammetry has been extremely powerful in investigating the electronic structure of metal nanoclusters, especially near HOMO and LUMO levels. A sizable opening of HOMO-LUMO gap observed for Au25(SR)18 gradually decreases with increasing nanocluster size, which is in line with the change in the optical gap. Heteroatom-doping has been a powerful strategy to modify the optical and electrochemical properties of metal nanoclusters at the atomic level. While the superatom theory predicts 8-electron configuration for [Au25(SR)18]- and many doped nanoclusters thereof, Pt- and Pd-doped [PtAu24(SR)18]0 and [PdAu24(SR)18]0 nanoclusters show dramatically different electronic structures, as manifested in their optical spectra and voltammograms, suggesting the occurrence of the Jahn-Teller distortion in these doped nanoclusters. Furthermore, metal-doping may alter their surface binding properties, as well as redox potentials. Metal nanoclusters offer great potential for attaining high activity and selectivity in their electrocatalytic applications. The well-defined core-shell structure of a metal nanocluster is of special advantage because the core and shell can be independently engineered to exhibit suitable binding properties and redox potentials. We discuss recent progress made in electrocatalysis based upon metal nanoclusters tailored for water splitting, CO2 conversion, and electrochemical sensing. A well-defined model nanocatalyst is absolutely necessary to reveal the detailed mechanism of electrocatalysis and thereby to lead to the development of a new efficient electrocatalyst. We envision that atomically controlled metal nanoclusters will enable us to systematically optimize the electrochemical and surface properties suitable for electrocatalysis, thus providing a powerful platform for the discovery of finely tuned nanocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
求助发布了新的文献求助10
刚刚
buno应助zoe采纳,获得10
1秒前
junzilan发布了新的文献求助10
1秒前
1秒前
细品岁月完成签到 ,获得积分10
1秒前
细心书蕾完成签到 ,获得积分10
2秒前
无花果应助l11x29采纳,获得10
4秒前
4秒前
老詹头发布了新的文献求助10
4秒前
思源应助叫滚滚采纳,获得10
5秒前
6秒前
刘歌完成签到 ,获得积分10
6秒前
阿巡完成签到,获得积分10
6秒前
Chen完成签到,获得积分10
8秒前
LSH970829发布了新的文献求助10
8秒前
哈哈哈完成签到 ,获得积分10
9秒前
汤姆完成签到,获得积分10
9秒前
11秒前
11秒前
翠翠完成签到,获得积分10
12秒前
12秒前
LSH970829完成签到,获得积分10
13秒前
Lyg完成签到,获得积分20
14秒前
坚强的樱发布了新的文献求助10
14秒前
baodingning完成签到,获得积分10
15秒前
15秒前
公茂源发布了新的文献求助30
15秒前
热爱完成签到,获得积分10
16秒前
17秒前
叫滚滚发布了新的文献求助10
18秒前
星瑆心完成签到,获得积分10
18秒前
啦啦啦啦啦完成签到,获得积分10
19秒前
Lyg发布了新的文献求助10
19秒前
Dksido完成签到,获得积分10
20秒前
兰博基尼奥完成签到,获得积分10
20秒前
热情芷荷发布了新的文献求助10
22秒前
random完成签到,获得积分10
23秒前
23秒前
果果瑞宁完成签到,获得积分10
23秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808