Electrochemistry of Atomically Precise Metal Nanoclusters

纳米团簇 材料科学 纳米技术 纳米颗粒 电化学 电催化剂 金属 密度泛函理论 化学物理 化学 物理化学 计算化学 电极 冶金
作者
Kyuju Kwak,Dongil Lee
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:52 (1): 12-22 被引量:360
标识
DOI:10.1021/acs.accounts.8b00379
摘要

Thiolate-protected metal nanoparticles containing a few to few hundred metal atoms are interesting materials exhibiting unique physicochemical properties. They encompass the bulk-to-molecule transition region, where discrete electronic states emerge and electronic band energetics yield to quantum confinement effects. Recent progresses in the synthesis and characterization of ultrasmall gold nanoparticles have opened up new avenues for the isolation of extremely monodispersed nanoparticles with atomically precision. These nanoparticles are also called nanoclusters to distinguish them from other regular metal nanoparticles with core diameter >2 nm. These nanoclusters are typically identified by their actual molecular formulas; prominent among these are Au25(SR)18, Au38(SR)24, and Au102(SR)44, where SR is organothiolate. A number of single crystal structures of these nanoclusters have been disclosed. Researchers have effectively utilized density functional theory (DFT) calculations to predict their atomic and electronic structures, as well as their physicochemical properties. The atomically precise metal nanoclusters have been the focus of recent studies owing to their novel size-specific electrochemical, optical, and catalytic properties. In this Account, we highlight recent advances in electrochemistry of atomically precise metal nanoclusters and their applications in electrocatalysis and electrochemical sensing. Compared with gold nanoclusters, much less progress has been made in the electrochemical studies of other metal nanoclusters, and thus, we mainly focus on the electrochemistry and electrochemical applications of gold-based nanoclusters. Voltammetry has been extremely powerful in investigating the electronic structure of metal nanoclusters, especially near HOMO and LUMO levels. A sizable opening of HOMO-LUMO gap observed for Au25(SR)18 gradually decreases with increasing nanocluster size, which is in line with the change in the optical gap. Heteroatom-doping has been a powerful strategy to modify the optical and electrochemical properties of metal nanoclusters at the atomic level. While the superatom theory predicts 8-electron configuration for [Au25(SR)18]- and many doped nanoclusters thereof, Pt- and Pd-doped [PtAu24(SR)18]0 and [PdAu24(SR)18]0 nanoclusters show dramatically different electronic structures, as manifested in their optical spectra and voltammograms, suggesting the occurrence of the Jahn-Teller distortion in these doped nanoclusters. Furthermore, metal-doping may alter their surface binding properties, as well as redox potentials. Metal nanoclusters offer great potential for attaining high activity and selectivity in their electrocatalytic applications. The well-defined core-shell structure of a metal nanocluster is of special advantage because the core and shell can be independently engineered to exhibit suitable binding properties and redox potentials. We discuss recent progress made in electrocatalysis based upon metal nanoclusters tailored for water splitting, CO2 conversion, and electrochemical sensing. A well-defined model nanocatalyst is absolutely necessary to reveal the detailed mechanism of electrocatalysis and thereby to lead to the development of a new efficient electrocatalyst. We envision that atomically controlled metal nanoclusters will enable us to systematically optimize the electrochemical and surface properties suitable for electrocatalysis, thus providing a powerful platform for the discovery of finely tuned nanocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
起个名不麻烦完成签到 ,获得积分10
刚刚
Gate完成签到,获得积分10
1秒前
呆熊发布了新的文献求助10
1秒前
marjorie发布了新的文献求助10
1秒前
沉静柚子发布了新的文献求助10
2秒前
brave完成签到 ,获得积分10
2秒前
skf发布了新的文献求助10
2秒前
2秒前
guojingjing发布了新的文献求助10
2秒前
三石完成签到,获得积分10
3秒前
3秒前
4秒前
核桃应助zhou_nuo采纳,获得10
4秒前
5秒前
orixero应助穆头呼橹橹采纳,获得10
5秒前
冯先森ya完成签到,获得积分10
5秒前
6秒前
Shaw发布了新的文献求助10
6秒前
霸气小懒虫完成签到,获得积分20
7秒前
7秒前
情怀应助呆熊采纳,获得10
7秒前
wanci应助忧郁的白竹采纳,获得10
8秒前
8秒前
8秒前
9秒前
兰真纯洁发布了新的文献求助10
9秒前
9秒前
哲别发布了新的文献求助10
9秒前
jiaming发布了新的文献求助10
9秒前
10秒前
652183758完成签到 ,获得积分10
10秒前
YYCBNU发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
秋秋秋l完成签到,获得积分10
12秒前
sun发布了新的文献求助10
12秒前
zhang完成签到 ,获得积分10
13秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206480
求助须知:如何正确求助?哪些是违规求助? 4384909
关于积分的说明 13654925
捐赠科研通 4243191
什么是DOI,文献DOI怎么找? 2327972
邀请新用户注册赠送积分活动 1325674
关于科研通互助平台的介绍 1277765