钝化
甲脒
钙钛矿(结构)
卤化物
能量转换效率
机制(生物学)
碘化物
铵
材料科学
光伏系统
纳米技术
铯
太阳能电池
钙钛矿太阳能电池
化学工程
无机化学
光电子学
开路电压
光伏
化学
图层(电子)
结晶学
有机化学
物理
工程类
生物
量子力学
生态学
作者
Essa A. Alharbi,Ahmed Y. Alyamani,Dominik Kubicki,Alexander R. Uhl,Brennan J. Walder,Anwar Q. Alanazi,Jingshan Luo,Andrés Burgos‐Caminal,Abdulrahman M. Albadri,Hamad Albrithen,Mohammad Hayal Alotaibi,Jacques‐E. Moser,Shaik M. Zakeeruddin,Fabrizio Giordano,Lyndon Emsley,Michaël Grätzel
标识
DOI:10.1038/s41467-019-10985-5
摘要
Abstract The high conversion efficiency has made metal halide perovskite solar cells a real breakthrough in thin film photovoltaic technology in recent years. Here, we introduce a straightforward strategy to reduce the level of electronic defects present at the interface between the perovskite film and the hole transport layer by treating the perovskite surface with different types of ammonium salts, namely ethylammonium, imidazolium and guanidinium iodide. We use a triple cation perovskite formulation containing primarily formamidinium and small amounts of cesium and methylammonium. We find that this treatment boosts the power conversion efficiency from 20.5% for the control to 22.3%, 22.1%, and 21.0% for the devices treated with ethylammonium, imidazolium and guanidinium iodide, respectively. Best performing devices showed a loss in efficiency of only 5% under full sunlight intensity with maximum power tracking for 550 h. We apply 2D- solid-state NMR to unravel the atomic-level mechanism of this passivation effect.
科研通智能强力驱动
Strongly Powered by AbleSci AI