人工智能
计算机科学
生成对抗网络
计算机视觉
图像翻译
翻译(生物学)
生成语法
探测器
不变(物理)
身份(音乐)
图像(数学)
模式识别(心理学)
数学
物理
声学
化学
信使核糖核酸
基因
电信
生物化学
数学物理
作者
Zhongling Wang,Zhenzhong Chen,Feng Wu
出处
期刊:IEEE Signal Processing Letters
[Institute of Electrical and Electronics Engineers]
日期:2018-06-08
卷期号:25 (8): 1161-1165
被引量:63
标识
DOI:10.1109/lsp.2018.2845692
摘要
Thermal cameras can capture images invariant to illumination conditions. However, thermal facial images are difficult to be recognized by human examiners. In this letter, an end-to-end framework, which consists of a generative network and a detector network, is proposed to translate thermal facial images into visible ones. The generative network aims at generating visible images given the thermal ones. The detector can locate important facial landmarks on visible faces and help the generative network to generate more realistic images that are easier to be recognized. As demonstrated in the experiments, the faces generated by our method have good visual quality and maintain identity preserving features.
科研通智能强力驱动
Strongly Powered by AbleSci AI