铁电性
材料科学
半导体
电介质
光电子学
工程物理
凝聚态物理
物理
作者
Simon Fichtner,Niklas Wolff,Fabian Lofink,Lorenz Kienle,Bernhard Wagner
摘要
Ferroelectric switching is unambigiously demonstrated for the first time in a III-V semiconductor based material: AlScN -- A discovery which could help to satisfy the urgent demand for thin film ferroelectrics with high performance and good technological compatibility with generic semiconductor technology which arises from a multitude of memory, micro/nano-actuator and emerging applications based on controlling electrical polarization. The appearance of ferroelectricity in AlScN can be related to the continuous distortion of the original wurtzite-type crystal structure towards a layered-hexagonal structure with increasing Sc content and tensile strain, which is expected to be extendable to other III-nitride based solid solutions. Coercive fields which are systematically adjustable by more than 3 MV/cm, high remnant polarizations in excess of 100 \mu C/cm$^2$ which constitute the first experimental estimate of the previously inaccessible spontaneous polarization in a III-nitride based material, an almost ideally square-like hysteresis resulting in excellent piezoelectric linearity over a wide strain interval from -0.3% to +0.4% as well as a paraelectric transition temperature in excess of 600{\deg}C are confirmed. This intriguing combination of properties is to our knowledge as of now unprecedented in the field of polycrystalline ferroelectric thin films and promises to significantly advance the commencing integration of ferroelectric functionality to micro- and nanotechnology, while at the same time providing substantial insight to one of the central open questions of the III-nitride semiconductors - that of their actual spontaneous polarization.
科研通智能强力驱动
Strongly Powered by AbleSci AI