Spin-coating-assisted fabrication of ultrathin physical hydrogel films with high toughness and fast response

材料科学 韧性 旋涂 涂层 丙烯酸 极限抗拉强度 制作 聚合物 复合材料 化学工程 双层 纳米技术 化学 单体 病理 工程类 替代医学 医学 生物化学
作者
Si Yu Zheng,Ye Tian,Xin Ning Zhang,Miao Du,Yihu Song,Zi Liang Wu,Qiang Zheng
出处
期刊:Soft Matter [Royal Society of Chemistry]
卷期号:14 (28): 5888-5897 被引量:50
标识
DOI:10.1039/c8sm01126e
摘要

Hydrogel films have promising applications in medical dressings, flexible electronics, etc. However, it is challenging to fabricate ultrathin hydrogel films with high toughness and controllable thickness. Here, we report a facile approach to prepare tough physical hydrogel films by spin-coating of a poly(acrylic acid-co-acrylamide) (P(AAc-co-AAm)) solution and subsequent gelation in FeCl3 solution to form carboxyl-Fe3+ coordination complexes. The thickness of the obtained gel films, ranging from several to hundreds of micrometers, was easily tunable by adjusting the spin conditions and polymer concentration. The thus obtained hydrogel films showed excellent mechanical properties, with tensile breaking strengths of 0.6-14.5 MPa, breaking strains of 140-840%, Young's moduli of 0.1-61.7 MPa, and tearing fracture energies of 300-1300 J m-2. Based on this approach, responsive tough hydrogel films can also be prepared by spin-coating of a poly(acrylic acid-co-N-isopropylacrylamide) (P(AAc-co-NIPAm)) solution. The obtained gel films showed a fast response (<60 s) and a large output force (∼0.2 MPa) triggered by a concentrated saline solution, making them an ideal material in the design of chemomechanical devices. Furthermore, a bilayer hydrogel film was fabricated by two-step spin-coating of P(AAc-co-NIPAm) and P(AAc-co-AAm) solutions, which showed reversible bending deformation under external stimuli. This simple yet effective approach should be applicable to other systems to prepare versatile hydrogel films with tunable thickness and promising applications in diverse areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助腼腆的绝山采纳,获得10
刚刚
1秒前
1秒前
1秒前
2秒前
123发布了新的文献求助10
3秒前
3秒前
小杰完成签到 ,获得积分10
5秒前
晗月完成签到,获得积分10
5秒前
via完成签到,获得积分10
6秒前
6秒前
wtt发布了新的文献求助10
6秒前
7秒前
ky一下完成签到,获得积分10
7秒前
笔墨留香发布了新的文献求助10
8秒前
谦让的巨人完成签到,获得积分20
9秒前
10秒前
12秒前
12秒前
鞥枊发布了新的文献求助10
13秒前
14秒前
14秒前
gabee完成签到 ,获得积分10
14秒前
ymx发布了新的文献求助10
15秒前
16秒前
17秒前
清秀的代珊完成签到,获得积分20
17秒前
格林渥发布了新的文献求助10
18秒前
18秒前
yxy发布了新的文献求助10
19秒前
蓓蓓完成签到 ,获得积分20
19秒前
19秒前
20秒前
21秒前
鞥枊完成签到,获得积分10
21秒前
22秒前
哈哈婷完成签到,获得积分10
22秒前
22秒前
一米八发布了新的文献求助10
23秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975658
求助须知:如何正确求助?哪些是违规求助? 3519986
关于积分的说明 11200481
捐赠科研通 3256410
什么是DOI,文献DOI怎么找? 1798247
邀请新用户注册赠送积分活动 877490
科研通“疑难数据库(出版商)”最低求助积分说明 806376