Screening Chronic Myeloid Leukemia neutrophils using a novel 3-Dimensional Spectral Gradient Mapping algorithm on hyperspectral images

高光谱成像 像素 模式识别(心理学) 数据立方体 相似性(几何) 髓系白血病 图像(数学) 算法 人工智能 立方体(代数) 计算机科学 全光谱成像 数学
作者
Amrit Panda,Ram Bilas Pachori,Naveen Kakkar,M Joseph John,Neeta Devi Sinnappah-Kang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:: 106836-106836
标识
DOI:10.1016/j.cmpb.2022.106836
摘要

Background and objective Early diagnosis of chronic myeloid leukemia (CML) is important for effective treatment. The high spectral and spatial resolution of hyperspectral cellular or tissue images coupled with image analysis algorithms may provide avenues to detect and diagnose diseases early. Many algorithms have been used to analyze medical hyperspectral image data, each having their own strengths and short-comings. We present a novel 3-Dimensional Spectral Gradient Mapping (3-D SGM) method to analyze hyperspectral image cubes of CML versus healthy blood smears. Methods In the present study, we analyzed 13 hyperspectral image cubes of CML and healthy neutrophils. The 3-D SGM algorithm was compared to the conventional Windowed Spectral Angle Mapping (Windowed SAM) method. The 3-D SGM exploited the spectral information of the image cube together with the inter-band and inter-pixel data by extracting the 3-D gradient vector from each pixel. The Windowed SAM determined the similarity between the averaged window of a 2×2 training pixel group and the test pixel, in the multidimensional spectral angle. Results The specificity measure of 3-D SGM (97.7%) was superior to Windowed SAM (72.7%) at ruling out the presence of the disease, making it potentially ideal for screening patients. The positive likelihood ratio value of 3-D SGM (16.70) was superior in diagnosing the presence of the disease (i.e., positive test for CML) versus Windowed SAM (2.26). An accuracy value of 84.2% was achieved with 3-D SGM versus only 70.2% for Windowed SAM. Conclusion The new method is efficient and robust for analyzing hyperspectral images of CML versus healthy neutrophils. It has the potential to be developed into an inexpensive, minimally invasive method for screening CML, and could directly facilitate early diagnosis and treatment of the disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助暴躁小兔采纳,获得10
刚刚
小谷发布了新的文献求助10
刚刚
华仔应助许宗菊采纳,获得30
1秒前
大西瓜关注了科研通微信公众号
1秒前
2秒前
英姑应助无辜又菡采纳,获得30
2秒前
呆呆小猪完成签到,获得积分10
2秒前
橙子发布了新的文献求助10
2秒前
3秒前
FU完成签到,获得积分10
4秒前
akui发布了新的文献求助10
4秒前
眼睛大远航完成签到,获得积分10
5秒前
张小馨完成签到 ,获得积分10
6秒前
大胆中恶发布了新的文献求助30
6秒前
桂花发布了新的文献求助30
6秒前
Xy完成签到,获得积分10
6秒前
6秒前
LZQ发布了新的文献求助10
7秒前
8秒前
咕噜咕噜发布了新的文献求助10
8秒前
9秒前
FU发布了新的文献求助10
10秒前
11秒前
剪刀石头布完成签到,获得积分10
11秒前
沐风应助多肉葡萄采纳,获得20
12秒前
啦啦发布了新的文献求助10
13秒前
super chan发布了新的文献求助10
14秒前
可爱的函函应助海的终章采纳,获得10
15秒前
无辜又菡发布了新的文献求助30
16秒前
17秒前
Lemon陈发布了新的文献求助10
19秒前
vernon完成签到,获得积分20
21秒前
肖肖完成签到,获得积分10
21秒前
whn完成签到 ,获得积分10
21秒前
22秒前
大模型应助神凰采纳,获得10
22秒前
村医发布了新的文献求助50
23秒前
俗人发布了新的文献求助10
23秒前
张张完成签到 ,获得积分10
23秒前
wm发布了新的文献求助10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461273
求助须知:如何正确求助?哪些是违规求助? 3054977
关于积分的说明 9045885
捐赠科研通 2744911
什么是DOI,文献DOI怎么找? 1505727
科研通“疑难数据库(出版商)”最低求助积分说明 695812
邀请新用户注册赠送积分活动 695233