An Efficient and Explainable Ensemble Learning Model for Asphalt Pavement Condition Prediction Based on LTPP Dataset

可解释性 均方误差 水准点(测量) 国际粗糙度指数 特征(语言学) 预测建模 人工智能 机器学习 集成学习 计算机科学 数学 工程类 数据挖掘 统计 哲学 机械工程 地理 表面光洁度 语言学 大地测量学
作者
Yang Song,Yizhuang David Wang,Xianbiao Hu,Jenny Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 22084-22093 被引量:1
标识
DOI:10.1109/tits.2022.3164596
摘要

Accurate prediction of asphalt pavement condition is important to guide pavement maintenance practices. The existing models for pavement condition predictions are predominantly based on linear regressions or simple machine learning techniques. However, additional work on these models is needed to improve their basic assumptions, training efficiency, and interpretability. To this end, a new modeling approach is proposed in this manuscript, which includes a ThunderGBM-based ensemble learning model, coupled with the Shapley Additive Explanation (SHAP) method, to predict the International Roughness Index (IRI) of asphalt pavements. The SHAP method was applied to interpret the underlying influencing factors and their interactions. Twenty features were initially identified as the model inputs, and 2,699 observations were extracted from the Long-Term Pavement Performance (LTPP) database. Three benchmark models, namely the Mechanistic-Empirical Pavement Design Guide (MEPDG) model, the ANN model and the RF model, were used for comparison. The results showed that the developed model achieved a satisfactory result with a R-squared ( $\mathbf {R}^{2}$ ) value of 0.88 and Root Mean Square Error (RMSE) of 0.08, both better than three benchmark models. It ran 86 times and 2.3 times faster than the ANN and RF model, respectively. Feature interpretation was performed to identify the top influencing factors of IRI. The 20-feature model was further simplified based on the analysis result. The simplified model only required six features to efficiently and effectively predict IRI using the proposed ThunderGBM-based approach, which can reduce the workload in data collection and management for pavement engineers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wisteety完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
末班车发布了新的文献求助100
4秒前
呓语完成签到,获得积分10
4秒前
5秒前
5秒前
话梅糖糖完成签到,获得积分20
5秒前
田様应助淡然的寻冬采纳,获得10
5秒前
希望天下0贩的0应助热木采纳,获得10
5秒前
溪鱼应助金子采纳,获得10
6秒前
YOKO完成签到,获得积分10
6秒前
gz完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助Changlu采纳,获得30
6秒前
6秒前
7秒前
话梅糖糖发布了新的文献求助10
8秒前
8秒前
夜斗发布了新的文献求助10
8秒前
8秒前
开心绿柳发布了新的文献求助10
8秒前
科研通AI2S应助lolo采纳,获得10
9秒前
爆米花应助吐车上500采纳,获得10
10秒前
依依发布了新的文献求助10
10秒前
阿卡宁发布了新的文献求助30
10秒前
10秒前
呓语发布了新的文献求助10
10秒前
ding应助辛普森采纳,获得10
11秒前
poppy关注了科研通微信公众号
11秒前
11秒前
11秒前
lewis17发布了新的文献求助30
11秒前
12秒前
英俊的铭应助Michelle采纳,获得10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144018
求助须知:如何正确求助?哪些是违规求助? 2795670
关于积分的说明 7815932
捐赠科研通 2451682
什么是DOI,文献DOI怎么找? 1304642
科研通“疑难数据库(出版商)”最低求助积分说明 627255
版权声明 601419