Construction of cobalt vacancies in cobalt telluride to induce fast ionic/electronic diffusion kinetics for lithium-ion half/full batteries

材料科学 离子键合 动力学 碲化物 离子 扩散 锂(药物) 无机化学 化学工程 冶金 热力学 化学 有机化学 医学 物理 工程类 内分泌学 量子力学
作者
Lei Hu,Lin Li,Yuyang Zhang,Xiaohong Tan,Hao Yang,Xiaoming Lin,Yexiang Tong
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:127: 124-132 被引量:17
标识
DOI:10.1016/j.jmst.2022.04.011
摘要

Designing novel electrode materials with unique structures is of great significance for improving the performance of lithium ion batteries (LIBs). Herein, copper-doped Co1-x[email protected] carbon hollow nanoboxes (Cu-Co1-x[email protected] HNBs) have been fabricated by chemical etching of CuCo-ZIF nanoboxes, followed by a successive high-temperature tellurization process. The as-synthesized Cu-Co1-x[email protected] HNBs composite demonstrated faster ionic and electronic diffusion kinetics than the pristine [email protected] HNBs electrode. The existence of Co-vacancy promotes the reduction of Gibbs free energy change (∆GH*) and effectively improves the Li+ diffusion coefficient. XPS and theoretical calculations show that performance improvement is ascribed to the electronic interactions between Cu-Co1-xTe and nitrogen-doped carbon (NC) that trigger the shift of the p-band towards facilitation of interfacial charge transfer, which in turn helps boost up the lithium storage property. Besides, the proposed Cu-doping-induced Co-vacancy strategy can also be extended to other conversion-type cobalt-based material (CoSe2) in addition to as-obtained Cu-Co1-xSe2@NC HNBs anodes for long-life and high-capacity LIBs. More importantly, the fabricated LiCoO2//Cu-Co1-x[email protected] HNBs full cell exhibits a high energy density of 403 Wh kg−1 and a power density of 6000 W kg−1. We show that the energy/power density reported herein is higher than that of previously studied cobalt-based anodes, indicating the potential application of Cu-Co1-x[email protected] HNBs as a superior electrode material for LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
研友_QQC完成签到,获得积分10
2秒前
NeuroWhite完成签到,获得积分10
2秒前
2秒前
搜索v完成签到,获得积分10
3秒前
liuchuck完成签到 ,获得积分10
3秒前
3秒前
3秒前
猫独秀完成签到,获得积分10
3秒前
5秒前
buno应助yuefeng采纳,获得10
5秒前
yiming完成签到,获得积分10
5秒前
落落发布了新的文献求助10
6秒前
清秋若月完成签到 ,获得积分10
6秒前
6秒前
呵呵呵呵完成签到,获得积分10
7秒前
7秒前
远方发布了新的文献求助10
8秒前
zxc111关注了科研通微信公众号
8秒前
9秒前
nanhe698发布了新的文献求助10
9秒前
Huang完成签到,获得积分10
9秒前
碳土不凡完成签到 ,获得积分10
10秒前
10秒前
淡淡采白发布了新的文献求助10
11秒前
11秒前
12秒前
Akim应助dingdong采纳,获得10
12秒前
12秒前
12秒前
satchzhao发布了新的文献求助10
12秒前
可爱的函函应助尺素寸心采纳,获得10
12秒前
66发布了新的文献求助10
13秒前
一鸣完成签到,获得积分10
13秒前
13秒前
ding应助呵呵呵呵采纳,获得10
13秒前
13秒前
汉堡包应助hkxfg采纳,获得10
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808