The not-so-dead of winter: underwater light climate and primary productivity under snow and ice cover in inland lakes

环境科学 浮游植物 水柱 海洋学 生态系统 湖泊生态系统 气候变化 营养状态指数 生态学 自然地理学 地质学 地理 地貌学 营养物 生物
作者
Andrew J. Bramburger,Ted Ozersky,Greg M. Silsbe,Christopher J. Crawford,Leif G. Olmanson,Kirill Shchapov
出处
期刊:Inland Waters [Informa]
卷期号:13 (1): 1-12 被引量:24
标识
DOI:10.1080/20442041.2022.2102870
摘要

As global surface temperatures continue to rise as a result of anthropogenic climate change, effects in temperate lakes are likely to be more pronounced than in other ecosystems. Decreases in snow and ice cover extent and duration and extended periods of summer stratification have been observed in temperate lake systems throughout the Anthropocene. However, the effects of changing snow and ice cover on lacustrine communities remain largely uninvestigated. We examined underwater light climate and associated primary productivity patterns under snow-covered and clear-lake ice in 6 inland lakes in Minnesota, USA, spanning gradients of water column optical properties (blue, green, brown) associated with trophic status and organic material content. In all lakes, snow cover influenced not only the intensity, but also the spectral signature of light penetrating into the water column. Specifically, the wavelength of maximum penetration was shifted towards longer wavelengths under snow cover in green (eutrophic) lakes but was shifted towards shorter wavelengths in blue and brown lakes. Volumetric primary productivity was often higher than anticipated (e.g., ∼1200 mg m−3 d−1; Lake Minnetonka, snow-covered ice). Carbon assimilation rates were lower under snow-covered ice throughout the water column in all lake types except immediately under cleared ice in eutrophic lakes, where phytoplankton were likely photoinhibited because of the penetration of intense, short-wavelength light. These findings suggest that changes to snow and ice cover under ongoing climate change scenarios can affect patterns of phytoplankton primary productivity in sensitive aquatic ecosystems.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
D.fdc发布了新的文献求助10
3秒前
6秒前
ltt应助ne采纳,获得10
8秒前
英勇的黑猫完成签到,获得积分10
9秒前
12秒前
12秒前
FashionBoy应助hainan采纳,获得10
14秒前
14秒前
14秒前
善学以致用应助yohoo采纳,获得10
14秒前
16秒前
认真白萱完成签到,获得积分10
16秒前
文静幼荷完成签到 ,获得积分10
19秒前
big张发布了新的文献求助10
19秒前
yfjia应助automan采纳,获得10
21秒前
yang发布了新的文献求助10
23秒前
nicole_Jones发布了新的文献求助10
25秒前
jeers发布了新的文献求助30
25秒前
25秒前
big张完成签到,获得积分10
26秒前
28秒前
29秒前
冰bing发布了新的文献求助10
31秒前
33秒前
小怪兽完成签到,获得积分10
33秒前
wzf发布了新的文献求助10
34秒前
35秒前
Lixin发布了新的文献求助10
36秒前
慕青应助崛宸采纳,获得30
37秒前
栉风沐雨完成签到,获得积分10
37秒前
斯文败类应助wzf采纳,获得10
37秒前
冰勾板勾完成签到,获得积分10
37秒前
小怪兽发布了新的文献求助20
40秒前
40秒前
酷波er应助科研通管家采纳,获得10
40秒前
云猩猩完成签到,获得积分10
41秒前
41秒前
科目三应助科研通管家采纳,获得30
43秒前
田様应助科研通管家采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872826
求助须知:如何正确求助?哪些是违规求助? 6492621
关于积分的说明 15670004
捐赠科研通 4990251
什么是DOI,文献DOI怎么找? 2690186
邀请新用户注册赠送积分活动 1632687
关于科研通互助平台的介绍 1590578