The not-so-dead of winter: underwater light climate and primary productivity under snow and ice cover in inland lakes

环境科学 浮游植物 水柱 海洋学 生态系统 湖泊生态系统 气候变化 营养状态指数 生态学 自然地理学 地质学 地理 地貌学 营养物 生物
作者
Andrew J. Bramburger,Ted Ozersky,Greg M. Silsbe,Christopher J. Crawford,Leif G. Olmanson,Kirill Shchapov
出处
期刊:Inland Waters [Informa]
卷期号:13 (1): 1-12 被引量:24
标识
DOI:10.1080/20442041.2022.2102870
摘要

As global surface temperatures continue to rise as a result of anthropogenic climate change, effects in temperate lakes are likely to be more pronounced than in other ecosystems. Decreases in snow and ice cover extent and duration and extended periods of summer stratification have been observed in temperate lake systems throughout the Anthropocene. However, the effects of changing snow and ice cover on lacustrine communities remain largely uninvestigated. We examined underwater light climate and associated primary productivity patterns under snow-covered and clear-lake ice in 6 inland lakes in Minnesota, USA, spanning gradients of water column optical properties (blue, green, brown) associated with trophic status and organic material content. In all lakes, snow cover influenced not only the intensity, but also the spectral signature of light penetrating into the water column. Specifically, the wavelength of maximum penetration was shifted towards longer wavelengths under snow cover in green (eutrophic) lakes but was shifted towards shorter wavelengths in blue and brown lakes. Volumetric primary productivity was often higher than anticipated (e.g., ∼1200 mg m−3 d−1; Lake Minnetonka, snow-covered ice). Carbon assimilation rates were lower under snow-covered ice throughout the water column in all lake types except immediately under cleared ice in eutrophic lakes, where phytoplankton were likely photoinhibited because of the penetration of intense, short-wavelength light. These findings suggest that changes to snow and ice cover under ongoing climate change scenarios can affect patterns of phytoplankton primary productivity in sensitive aquatic ecosystems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
seven完成签到,获得积分10
4秒前
Elite发布了新的文献求助30
5秒前
7秒前
8秒前
11235发布了新的文献求助10
10秒前
萧晓完成签到 ,获得积分10
10秒前
药药55完成签到,获得积分10
10秒前
donk发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
12秒前
Arthur完成签到,获得积分10
12秒前
18275412695发布了新的文献求助10
13秒前
14秒前
风清扬发布了新的文献求助10
14秒前
15秒前
juqiu发布了新的文献求助10
15秒前
17秒前
17秒前
思源应助Hazelwf采纳,获得10
18秒前
喜喜喜嘻嘻嘻完成签到 ,获得积分10
18秒前
迷路竹完成签到,获得积分10
18秒前
shanyuyulai完成签到 ,获得积分10
19秒前
领导范儿应助juqiu采纳,获得10
19秒前
璐璐完成签到,获得积分10
19秒前
19秒前
LJL完成签到,获得积分20
20秒前
兔子完成签到,获得积分10
20秒前
super chan发布了新的文献求助10
21秒前
drwlr发布了新的文献求助10
22秒前
Owen应助5114采纳,获得10
24秒前
gong完成签到,获得积分10
24秒前
1212发布了新的文献求助10
24秒前
小田完成签到 ,获得积分10
25秒前
依依发布了新的文献求助10
26秒前
小蘑菇应助陈泽宇采纳,获得10
30秒前
30秒前
PhDLi完成签到,获得积分10
31秒前
buno应助小马采纳,获得10
31秒前
fuiee完成签到,获得积分10
32秒前
蓝天应助麻辣小龙虾采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604106
求助须知:如何正确求助?哪些是违规求助? 4688956
关于积分的说明 14857141
捐赠科研通 4696700
什么是DOI,文献DOI怎么找? 2541175
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851