Simultaneous optimization of solvation structure and water-resistant capability of MgCl2-based electrolyte using an additive combination of organic and inorganic lithium salts

电解质 溶剂化 过电位 锂(药物) 法拉第效率 无机化学 电化学 离解(化学) 化学 化学工程 材料科学 电极 有机化学 离子 物理化学 内分泌学 工程类 医学
作者
Haiyan Fan,Xinxin Zhang,Jianhua Xiao,Yitao Lin,Shuaiyang Ren,Yuxing Zhao,Hua Yuan,Ludi Pan,Qiyuan Lin,Haowen Liu,Yipeng Su,Yi Su,Yang Liu,Yuegang Zhang
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:51: 873-881 被引量:32
标识
DOI:10.1016/j.ensm.2022.07.023
摘要

The inefficient operation of Mg batteries associated with the high sensitivity of electrolyte to impurities (water, air, etc.) seriously impedes their practical use. Here, we report a water-resistant MgCl2-based electrolyte consisting of low-cost organic lithium hexamethyldisilazide (LiHMDS) and inorganic lithium chloride (LiCl) dual-salt additives. The electrolyte displays excellent electrochemical performance for reversible Mg stripping and plating, with overpotential of 0.15 V and 0.30 V at 5 mA cm–2 and 10 mA cm–2, respectively, and Coulombic efficiency (CE) up to 100%. It keeps its reactivity even with the presence of 1000 ppm H2O or ∼3% impurities introduced by using impure reagents (MgCl2, 97%) during its synthesis. Experimental characterization and theoretical calculations reveal that the single-salt additive of organic LiHMDS in MgCl2/THF is a “double edged sword”:the upside is that, with a small amount added, it contributes to reduce the de-solvation energy of Mg2+by forming water-resistant [MgxLiyHMDSzCl2x+y-z· nTHF] aggregates with MgCl2 salts; the downside is that, while its amount increases, it starts to dissociate those functional aggregates. On the other hand, adding an inorganic salt LiCl as co-additive can reconstruct [MgxLiyHMDSzCl2x+y-z· nTHF] aggregates and avoid their dissociation. With this hybrid electrolyte, a Mg//Mo6S8 full cell can achieve a discharge specific capacity of 83 mA h g–1 even after 10,000 cycles at a high rate of 31.1 C (1 C = 128.8 mA g–1). This solvation structure reconstruction approach has far-reaching significance for the electrolyte design for rechargeable magnesium batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
这个名字有何用完成签到,获得积分10
刚刚
我是老大应助ayuii采纳,获得10
1秒前
1秒前
Amorphous完成签到,获得积分10
2秒前
down发布了新的文献求助10
2秒前
hzhniubility完成签到,获得积分10
3秒前
完美世界应助自由妙竹采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
醉熏的水绿完成签到 ,获得积分10
6秒前
wuhanfei发布了新的文献求助10
6秒前
7秒前
7秒前
喜悦的半青完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
自由妙竹发布了新的文献求助10
10秒前
10秒前
SS完成签到,获得积分0
10秒前
10秒前
11秒前
11秒前
CipherSage应助甜甜的寻真采纳,获得10
12秒前
Lucas应助欣怡高采纳,获得10
12秒前
靳亮发布了新的文献求助10
14秒前
淡定访枫发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
碧蓝亦玉完成签到,获得积分10
16秒前
骨道发布了新的文献求助10
16秒前
未来可期完成签到,获得积分10
17秒前
万能图书馆应助甜蜜鹭洋采纳,获得10
18秒前
未来可期发布了新的文献求助30
19秒前
21秒前
chao完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660203
求助须知:如何正确求助?哪些是违规求助? 4832146
关于积分的说明 15089540
捐赠科研通 4818815
什么是DOI,文献DOI怎么找? 2578823
邀请新用户注册赠送积分活动 1533414
关于科研通互助平台的介绍 1492157