Soil Salinity and Soil Water Content Estimation Using Digital Images in Coastal Field: A Case Study in Yancheng City of Jiangsu Province, China

土壤科学 含水量 环境科学 亮度 土壤盐分 土壤水分 土壤图 土工试验 Pedotransfer函数 水文学(农业) 地质学 岩土工程 物理 光学 导水率
作者
Lu Xu,Hongyuan Ma,Zhichun Wang
出处
期刊:Chinese Geographical Science [Springer Nature]
卷期号:32 (4): 676-685 被引量:5
标识
DOI:10.1007/s11769-022-1293-1
摘要

Soil is the essential part for agricultural and environmental sciences, and soil salinity and soil water content are both the important influence factors for sustainable development of agriculture and ecological environment. Digital camera, as one of the most popular and convenient proximal sensing instruments, has its irreplaceable position for soil properties assessment. In this study, we collected 52 soil samples and photographs at the same time along the coast in Yancheng City of Jiangsu Province. We carefully analyzed the relationship between soil properties and image brightness, and found that soil salt content had higher correlation with average image brightness value than soil water content. From the brightness levels, the high correlation coefficients between soil salt content and brightness levels concentrated on the high brightness values, and the high correlation coefficients between soil water content and brightness levels focused on the low brightness values. Different significance levels (P) determined different brightness levels related to soil properties, hence P value setting can be an optional way to select brightness levels as the input variables for modeling soil properties. Given these information, random forest algorithm was applied to develop soil salt content and soil water content inversion models using randomly 70% of the dataset, and the rest data for testing models. The results showed that soil salt content model had high accuracy (Rv2 = 0.79, RMSEv = 12 g/kg, and RPDv = 2.18), and soil water content inversion model was barely satisfied (Rv2 = 0.47, RMSEv = 3.04%, and RPDv = 1.38). This study proposes a method of modeling soil properties with a digital camera. Combining unmanned aerial vehicle (UAV), it has potential popularization and application value for precise agriculture and land management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助飞快的以冬采纳,获得10
1秒前
mito完成签到,获得积分10
2秒前
orixero应助lq1024424采纳,获得10
3秒前
3秒前
Blummer完成签到,获得积分10
4秒前
太牛的GGB发布了新的文献求助10
4秒前
5秒前
sbc发布了新的文献求助10
5秒前
bkagyin应助樊珩采纳,获得10
7秒前
8秒前
bigboss完成签到 ,获得积分10
9秒前
巫安白完成签到 ,获得积分10
10秒前
欣慰听南发布了新的文献求助10
10秒前
Shirley发布了新的文献求助10
12秒前
ppg123应助单纯青寒采纳,获得10
13秒前
you发布了新的文献求助10
13秒前
jia完成签到,获得积分10
14秒前
14秒前
噜噜噜完成签到,获得积分10
15秒前
仔仔在完成签到,获得积分10
15秒前
研友_VZG7GZ应助Gc采纳,获得10
15秒前
华仔应助honda采纳,获得10
18秒前
周小浪完成签到,获得积分10
18秒前
樊珩发布了新的文献求助10
21秒前
you完成签到,获得积分20
22秒前
24秒前
小马甲应助加减乘除采纳,获得10
24秒前
26秒前
樊珩完成签到,获得积分10
27秒前
doocan完成签到,获得积分10
27秒前
lh大号发布了新的文献求助10
28秒前
老阶梯完成签到,获得积分10
28秒前
28秒前
高兴微笑完成签到,获得积分10
29秒前
xiao123789完成签到,获得积分10
30秒前
KleinFC应助不问悲欢采纳,获得10
31秒前
lii完成签到,获得积分20
31秒前
32秒前
端庄的煎蛋完成签到,获得积分10
33秒前
丘比特应助无私的颤采纳,获得10
33秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262967
求助须知:如何正确求助?哪些是违规求助? 2903657
关于积分的说明 8326071
捐赠科研通 2573529
什么是DOI,文献DOI怎么找? 1398397
科研通“疑难数据库(出版商)”最低求助积分说明 654153
邀请新用户注册赠送积分活动 632707