Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study

医学 血管内超声 组内相关 狭窄 内科学 心脏病学 冠状动脉疾病 放射科 心肌梗塞
作者
Andrew Lin,Nipun Manral,Priscilla McElhinney,Aditya Killekar,Hidenari Matsumoto,Jacek Kwiecinski,Konrad Pieszko,Aryabod Razipour,Kajetan Grodecki,Caroline Park,Yuka Otaki,Mhairi Doris,Alan C Kwan,Donghee Han,Keiichiro Kuronuma,Guadalupe Flores Tomasino,Evangelos Tzolos,Aakash Shanbhag,Markus Goeller,Mohamed Marwan,Heidi Gransar,Balaji K Tamarappoo,Sebastien Cadet,Stephan Achenbach,Stephen J Nicholls,Dennis T Wong,Daniel S Berman,Marc Dweck,David E Newby,Michelle C Williams,Piotr J Slomka,Damini Dey
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:4 (4): e256-e265
标识
DOI:10.1016/s2589-7500(22)00022-x
摘要

Summary

Background

Atherosclerotic plaque quantification from coronary CT angiography (CCTA) enables accurate assessment of coronary artery disease burden and prognosis. We sought to develop and validate a deep learning system for CCTA-derived measures of plaque volume and stenosis severity.

Methods

This international, multicentre study included nine cohorts of patients undergoing CCTA at 11 sites, who were assigned into training and test sets. Data were retrospectively collected on patients with a wide range of clinical presentations of coronary artery disease who underwent CCTA between Nov 18, 2010, and Jan 25, 2019. A novel deep learning convolutional neural network was trained to segment coronary plaque in 921 patients (5045 lesions). The deep learning network was then applied to an independent test set, which included an external validation cohort of 175 patients (1081 lesions) and 50 patients (84 lesions) assessed by intravascular ultrasound within 1 month of CCTA. We evaluated the prognostic value of deep learning-based plaque measurements for fatal or non-fatal myocardial infarction (our primary outcome) in 1611 patients from the prospective SCOT-HEART trial, assessed as dichotomous variables using multivariable Cox regression analysis, with adjustment for the ASSIGN clinical risk score.

Findings

In the overall test set, there was excellent or good agreement, respectively, between deep learning and expert reader measurements of total plaque volume (intraclass correlation coefficient [ICC] 0·964) and percent diameter stenosis (ICC 0·879; both p<0·0001). When compared with intravascular ultrasound, there was excellent agreement for deep learning total plaque volume (ICC 0·949) and minimal luminal area (ICC 0·904). The mean per-patient deep learning plaque analysis time was 5·65 s (SD 1·87) versus 25·66 min (6·79) taken by experts. Over a median follow-up of 4·7 years (IQR 4·0–5·7), myocardial infarction occurred in 41 (2·5%) of 1611 patients from the SCOT-HEART trial. A deep learning-based total plaque volume of 238·5 mm3 or higher was associated with an increased risk of myocardial infarction (hazard ratio [HR] 5·36, 95% CI 1·70–16·86; p=0·0042) after adjustment for the presence of deep learning-based obstructive stenosis (HR 2·49, 1·07–5·50; p=0·0089) and the ASSIGN clinical risk score (HR 1·01, 0·99–1·04; p=0·35).

Interpretation

Our novel, externally validated deep learning system provides rapid measurements of plaque volume and stenosis severity from CCTA that agree closely with expert readers and intravascular ultrasound, and could have prognostic value for future myocardial infarction.

Funding

National Heart, Lung, and Blood Institute and the Miriam & Sheldon G Adelson Medical Research Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助半夏采纳,获得10
2秒前
摇光完成签到,获得积分10
2秒前
无辜的花卷关注了科研通微信公众号
3秒前
华仔应助Vegetable_Dog采纳,获得10
4秒前
6秒前
顾矜应助Coisini采纳,获得10
8秒前
11秒前
mm发布了新的文献求助10
11秒前
任性茉莉完成签到,获得积分10
13秒前
Judith完成签到 ,获得积分10
15秒前
秋老虎发布了新的文献求助10
16秒前
JamesPei应助儞是哪个采纳,获得10
18秒前
19秒前
无情代亦发布了新的文献求助10
19秒前
20秒前
小梦发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
Coisini发布了新的文献求助10
22秒前
半夏发布了新的文献求助10
23秒前
田様应助靓丽的发箍采纳,获得10
23秒前
谦让的焱完成签到,获得积分10
26秒前
26秒前
Coisini完成签到,获得积分10
27秒前
怡然铃铛发布了新的文献求助10
27秒前
在水一方应助vv采纳,获得10
29秒前
29秒前
FashionBoy应助无情代亦采纳,获得10
29秒前
33秒前
36秒前
儞是哪个发布了新的文献求助10
36秒前
36秒前
xiaoqi完成签到,获得积分10
37秒前
凉白开发布了新的文献求助10
39秒前
重要的金毛关注了科研通微信公众号
41秒前
41秒前
上官若男应助彭苗苗采纳,获得10
42秒前
JamesPei应助11采纳,获得10
42秒前
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789630
关于积分的说明 7791721
捐赠科研通 2445972
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079