Artificial intelligence-based decision support model for new drug development planning

计算机科学 药物开发 随机森林 人工智能 机器学习 2019年冠状病毒病(COVID-19) 临床决策支持系统 风险分析(工程) 决策支持系统 药品 业务 医学 传染病(医学专业) 疾病 精神科 病理
作者
Ye Lim Jung,Hyoung Sun Yoo,JeeNa Hwang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:198: 116825-116825 被引量:16
标识
DOI:10.1016/j.eswa.2022.116825
摘要

New drug development guarantees a very high return on success, but the success rate is extremely low. Pharmaceutical companies have attempted to use various strategies to increase the success rate of drug development, but this goal has been difficult to achieve. In this study, we developed a model that can guide effective decision-making at the planning stage of new drug development by leveraging machine learning. The Drug Development Recommendation (DDR) model, we present here, is a hybrid model for recommending and/or predicting drug groups suitable for development by individual pharmaceutical companies. It combines association rule learning, collaborative filtering, and content-based filtering approaches for enterprise-customized recommendations. In the case of content-based filtering applying a random forest classification algorithm, the accuracy and area under curve were 78% and 0.74, respectively. In particular, the DDR model was applied to predict the success probability of companies developing Coronavirus disease 2019 (COVID-19) vaccines. It was demonstrated that the higher the predicted score from the DDR model, the more progress in the clinical phase of the COVID-19 vaccine development. Although our approach has limitations that should be improved, it makes scientific as well as industrial contributions in that the DDR model can support rational decision-making prior to initiating drug development by considering not only technical aspects but also company-related variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四七完成签到,获得积分10
2秒前
从容的沛槐完成签到,获得积分10
3秒前
自由南珍发布了新的文献求助10
4秒前
kimi应助Endymion采纳,获得10
5秒前
专注的筝发布了新的文献求助10
5秒前
CodeCraft应助Rian采纳,获得10
7秒前
8秒前
小川完成签到,获得积分10
9秒前
edtaa发布了新的文献求助10
9秒前
11秒前
笨笨志泽发布了新的文献求助10
11秒前
华仔应助专注的筝采纳,获得10
12秒前
星河完成签到,获得积分10
13秒前
13秒前
拾柒发布了新的文献求助10
14秒前
许愿完成签到 ,获得积分10
14秒前
一一应助科研通管家采纳,获得10
14秒前
jekg应助科研通管家采纳,获得10
14秒前
b1124019应助科研通管家采纳,获得10
14秒前
一一应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
14秒前
Akim应助科研通管家采纳,获得10
14秒前
15秒前
阿龙啊发布了新的文献求助10
17秒前
Fsky完成签到,获得积分10
18秒前
18秒前
111发布了新的文献求助10
20秒前
20秒前
wanci应助诺诺诺诺呀采纳,获得10
20秒前
Rian发布了新的文献求助10
22秒前
困敦发布了新的文献求助10
22秒前
搜集达人应助zym采纳,获得10
22秒前
大模型应助轻松的鸿煊采纳,获得10
24秒前
edtaa发布了新的文献求助10
24秒前
青树柠檬完成签到 ,获得积分10
24秒前
叶子发布了新的文献求助20
26秒前
散逸层梦游给songvv的求助进行了留言
26秒前
26秒前
kikiaini完成签到,获得积分0
26秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247606
求助须知:如何正确求助?哪些是违规求助? 2890926
关于积分的说明 8265247
捐赠科研通 2559191
什么是DOI,文献DOI怎么找? 1387904
科研通“疑难数据库(出版商)”最低求助积分说明 650658
邀请新用户注册赠送积分活动 627495