A novel method for carbon emission forecasting based on EKC hypothesis and nonlinear multivariate grey model: evidence from transportation sector

库兹涅茨曲线 温室气体 多元统计 粒子群优化 人口 计量经济学 非线性系统 统计的 统计 环境科学 经济 数学优化 数学 生态学 人口学 社会学 物理 生物 量子力学
作者
Siyuan Huang,Xinping Xiao,Huan Guo
出处
期刊:Environmental Science and Pollution Research [Springer Nature]
卷期号:29 (40): 60687-60711 被引量:23
标识
DOI:10.1007/s11356-022-20120-5
摘要

Greenhouse gas emissions have brought a serious challenge to the global environment and climate. Efficient and accurate prediction of carbon emissions is essential for the decision-making sectors to control growth and formulate policies. Firstly, considering the economic, demographic, and energy factors, a novel nonlinear multivariate grey model (ENGM(1,4)) based on environmental Kuznets curve (EKC) is proposed with respect to the data characteristics of the incomplete information of carbon emission of transportation sector. The model integrates the IPAT ("Influence = Population, Affluence, Technology") equation and the extended atochastic impacts by regression on population, affluence, and technology model (STIRPAT). Secondly, the derivation method is used to solve the time response equation of the model and the quantum particle swarm optimization algorithm (QPSO) is designed to optimize the model parameters. Then, 18 years of carbon emission data from China, the USA, and Japan are selected as the validation set. Comparative analysis indicates that the prediction accuracy of the statistical models and the intelligent models depends on sufficient samples and complex variables, and has certain limitations in limited sample prediction. The calculation results show that the new model outperforms other models in various evaluation indicators, indicating that its prediction accuracy is higher. Finally, the projections show that in 2019-2025, the average increase in carbon emissions from the transport sector in China and the USA was 2.837% and 2.394%, respectively, while Japan shows a downward trend with an average decline rate of 1.2231%. The analyzed prediction results are consistent with current situation of the three countries and the transport sectors, demonstrating the high accuracy and reliability of the new model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助傲娇平蝶采纳,获得10
刚刚
迷你的冰巧完成签到,获得积分10
1秒前
里苏特完成签到,获得积分10
2秒前
鳗鱼契完成签到,获得积分10
2秒前
樊小雾完成签到,获得积分10
2秒前
zpc发布了新的文献求助10
2秒前
十一完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
miya完成签到 ,获得积分10
3秒前
3秒前
柔弱的问梅完成签到,获得积分10
4秒前
乐乐应助Litoivda采纳,获得10
5秒前
香蕉诗蕊完成签到,获得积分0
5秒前
香蕉觅云应助HAOHAO采纳,获得10
5秒前
jianjiao完成签到,获得积分10
6秒前
尹文完成签到,获得积分20
6秒前
Persevere完成签到,获得积分10
7秒前
认真台灯完成签到 ,获得积分10
7秒前
7秒前
湛湛完成签到,获得积分10
8秒前
lcj完成签到,获得积分10
9秒前
肥奇力完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
xuebinxu完成签到 ,获得积分10
13秒前
yilhammm应助科研通管家采纳,获得10
14秒前
adljian完成签到,获得积分10
14秒前
罗美女应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
李健的小迷弟应助Mine采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得30
14秒前
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
15秒前
ShawnJohn应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
天行马完成签到,获得积分10
15秒前
ShawnJohn应助科研通管家采纳,获得10
15秒前
雨姐科研应助科研通管家采纳,获得10
15秒前
雨姐科研应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715880
求助须知:如何正确求助?哪些是违规求助? 5237687
关于积分的说明 15275397
捐赠科研通 4866497
什么是DOI,文献DOI怎么找? 2613022
邀请新用户注册赠送积分活动 1563137
关于科研通互助平台的介绍 1520689