A novel method for carbon emission forecasting based on EKC hypothesis and nonlinear multivariate grey model: evidence from transportation sector

库兹涅茨曲线 温室气体 多元统计 粒子群优化 人口 计量经济学 非线性系统 统计的 统计 环境科学 数学优化 数学 生态学 物理 人口学 量子力学 社会学 生物
作者
Siyuan Huang,Xinping Xiao,Huan Guo
出处
期刊:Environmental Science and Pollution Research [Springer Nature]
卷期号:29 (40): 60687-60711 被引量:9
标识
DOI:10.1007/s11356-022-20120-5
摘要

Greenhouse gas emissions have brought a serious challenge to the global environment and climate. Efficient and accurate prediction of carbon emissions is essential for the decision-making sectors to control growth and formulate policies. Firstly, considering the economic, demographic, and energy factors, a novel nonlinear multivariate grey model (ENGM(1,4)) based on environmental Kuznets curve (EKC) is proposed with respect to the data characteristics of the incomplete information of carbon emission of transportation sector. The model integrates the IPAT ("Influence = Population, Affluence, Technology") equation and the extended atochastic impacts by regression on population, affluence, and technology model (STIRPAT). Secondly, the derivation method is used to solve the time response equation of the model and the quantum particle swarm optimization algorithm (QPSO) is designed to optimize the model parameters. Then, 18 years of carbon emission data from China, the USA, and Japan are selected as the validation set. Comparative analysis indicates that the prediction accuracy of the statistical models and the intelligent models depends on sufficient samples and complex variables, and has certain limitations in limited sample prediction. The calculation results show that the new model outperforms other models in various evaluation indicators, indicating that its prediction accuracy is higher. Finally, the projections show that in 2019-2025, the average increase in carbon emissions from the transport sector in China and the USA was 2.837% and 2.394%, respectively, while Japan shows a downward trend with an average decline rate of 1.2231%. The analyzed prediction results are consistent with current situation of the three countries and the transport sectors, demonstrating the high accuracy and reliability of the new model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小枫完成签到 ,获得积分10
1秒前
小蘑菇应助Mm采纳,获得10
1秒前
李爱国应助可耐的白山采纳,获得10
1秒前
2秒前
周易完成签到,获得积分10
3秒前
雪白的若翠完成签到,获得积分10
3秒前
可爱的函函应助cghmfgh采纳,获得10
4秒前
KIVA完成签到,获得积分10
7秒前
XZY发布了新的文献求助10
7秒前
8秒前
认真学习完成签到,获得积分10
9秒前
小陈老板发布了新的文献求助10
10秒前
醒醒发布了新的文献求助10
10秒前
深情安青应助林夕采纳,获得10
11秒前
bkagyin应助部川苦茶采纳,获得10
11秒前
wanci应助文静的千秋采纳,获得10
14秒前
研友_LpAbjn完成签到,获得积分10
14秒前
16秒前
18秒前
18秒前
爱学习的11完成签到,获得积分10
20秒前
林夕发布了新的文献求助10
21秒前
22秒前
22秒前
buzhidao完成签到,获得积分10
23秒前
不配.应助研友_Z7XY28采纳,获得20
24秒前
Niuma完成签到,获得积分10
25秒前
小陈老板完成签到,获得积分10
25秒前
26秒前
ZJK完成签到,获得积分20
27秒前
28秒前
28秒前
Sean0382发布了新的文献求助10
28秒前
29秒前
30秒前
dai完成签到,获得积分10
30秒前
逃跑的想表白的你猜完成签到,获得积分20
30秒前
guoling完成签到,获得积分10
32秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141768
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804148
捐赠科研通 2449027
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260