A novel method for carbon emission forecasting based on EKC hypothesis and nonlinear multivariate grey model: evidence from transportation sector

库兹涅茨曲线 温室气体 多元统计 粒子群优化 人口 计量经济学 非线性系统 统计的 统计 环境科学 经济 数学优化 数学 生态学 人口学 社会学 物理 生物 量子力学
作者
Siyuan Huang,Xinping Xiao,Huan Guo
出处
期刊:Environmental Science and Pollution Research [Springer Science+Business Media]
卷期号:29 (40): 60687-60711 被引量:19
标识
DOI:10.1007/s11356-022-20120-5
摘要

Greenhouse gas emissions have brought a serious challenge to the global environment and climate. Efficient and accurate prediction of carbon emissions is essential for the decision-making sectors to control growth and formulate policies. Firstly, considering the economic, demographic, and energy factors, a novel nonlinear multivariate grey model (ENGM(1,4)) based on environmental Kuznets curve (EKC) is proposed with respect to the data characteristics of the incomplete information of carbon emission of transportation sector. The model integrates the IPAT ("Influence = Population, Affluence, Technology") equation and the extended atochastic impacts by regression on population, affluence, and technology model (STIRPAT). Secondly, the derivation method is used to solve the time response equation of the model and the quantum particle swarm optimization algorithm (QPSO) is designed to optimize the model parameters. Then, 18 years of carbon emission data from China, the USA, and Japan are selected as the validation set. Comparative analysis indicates that the prediction accuracy of the statistical models and the intelligent models depends on sufficient samples and complex variables, and has certain limitations in limited sample prediction. The calculation results show that the new model outperforms other models in various evaluation indicators, indicating that its prediction accuracy is higher. Finally, the projections show that in 2019-2025, the average increase in carbon emissions from the transport sector in China and the USA was 2.837% and 2.394%, respectively, while Japan shows a downward trend with an average decline rate of 1.2231%. The analyzed prediction results are consistent with current situation of the three countries and the transport sectors, demonstrating the high accuracy and reliability of the new model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sew东坡完成签到,获得积分10
刚刚
动听安筠完成签到 ,获得积分10
刚刚
julian190完成签到,获得积分10
1秒前
ztl17523完成签到,获得积分10
1秒前
2秒前
花花完成签到,获得积分20
3秒前
jhxie完成签到,获得积分10
4秒前
HXX19完成签到 ,获得积分10
6秒前
7秒前
Darsine完成签到,获得积分10
7秒前
张张完成签到,获得积分10
7秒前
kelly完成签到,获得积分10
7秒前
accepted发布了新的文献求助10
8秒前
8秒前
宇文天思完成签到,获得积分10
8秒前
gudujian870928完成签到,获得积分10
11秒前
幽默的太阳完成签到 ,获得积分10
11秒前
洁净斑马发布了新的文献求助10
12秒前
旺仔发布了新的文献求助30
12秒前
YAN完成签到,获得积分10
12秒前
虚拟莫茗完成签到 ,获得积分10
12秒前
无相完成签到 ,获得积分10
13秒前
Lucas应助zmx采纳,获得10
14秒前
崔康佳完成签到,获得积分10
16秒前
xueluxin完成签到 ,获得积分10
16秒前
yin完成签到,获得积分10
17秒前
黄花完成签到 ,获得积分10
17秒前
好名字完成签到,获得积分10
18秒前
ww完成签到,获得积分10
18秒前
20秒前
Tk完成签到,获得积分10
21秒前
研友_LX7478完成签到,获得积分10
21秒前
小张想发刊完成签到,获得积分10
21秒前
doin完成签到,获得积分10
25秒前
爱笑的访梦完成签到,获得积分10
25秒前
eee完成签到,获得积分10
26秒前
青藤完成签到,获得积分10
27秒前
自信向梦发布了新的文献求助10
27秒前
小老头儿完成签到,获得积分10
28秒前
和光同尘完成签到,获得积分20
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015737
求助须知:如何正确求助?哪些是违规求助? 3555681
关于积分的说明 11318391
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027