Deep Learning Based Decision Support Framework for Cardiovascular Disease Prediction

计算机科学 人工智能 疾病 决策支持系统 深度学习 机器学习 医学 内科学
作者
Nitten Singh Rajjliwal,Girija Chetty
标识
DOI:10.1109/csde53843.2021.9718459
摘要

In this paper we propose a novel decision support framework based on deep learning for cardiovascular disease prediction. The proposed framework based on an innovative stacked dense neural layer and convolution neural network cascade architecture, addresses the significant imbalance in class distribution in CVD event detection task. The experimental evaluation of the proposed model was done on the NHANES super-dataset, obtained by fusion of different subsets of publicly NHANES (National Health and Nutrition Examination Survey) data for prediction of cardiovascular disease. Many machines and deep learning models have been proposed in the literature for CVD event detection. However, they assume balanced class distribution between positive and negative disease classes. For clinical settings, there is significant class imbalance, with few positive class samples as compared to abundant samples from normal or control class. Hence most of the traditional machine and deep learning models are vulnerable to class imbalance, even after using class-specific adjustment of weights (well established method for handling class imbalance) and can lead to poor performance for the minority class detection. The proposed model based on stacked-Dense-CNN cascade architecture is robust and resilient to the class imbalance and has better overall detection accuracy. The first stage of the stacked-Dense-CNN cascade consists of an optimal feature learning stage, comprising a LASSO (least absolute shrinkage and selection) and majority voting step, for extraction of significant and homogenized features. The second stage use of a novel stacked-Dense-CNN cascade model and a novel model development protocol involving an unique train-test dataset partitioning strategy. Also, by using a specific training routine per epoch, similar to the simulated annealing approach, it was possible to achieve enhanced detection performance, particularly for detection of minority class, and robustness to class imbalance. The experimental evaluation of the novel stacked-Dense-CNN cascade model on a super dataset obtained by fusing multiple data subsets of publicly available NHANES data, resulted in an accuracy of 81.8% accuracy for negative CVD cases (majority class), and 85% for the positive CVD cases (minority class), an improved performance as compared to previously proposed research approaches for imbalanced clinical data settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyh完成签到,获得积分10
1秒前
1秒前
玄风应助科研通管家采纳,获得10
1秒前
咚咚应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
汉堡包应助科研通管家采纳,获得30
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
JamesPei应助安全123采纳,获得10
2秒前
玄风应助科研通管家采纳,获得10
2秒前
nPgA2o应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
persist发布了新的文献求助10
3秒前
所所应助科研通管家采纳,获得10
3秒前
3秒前
玄风应助科研通管家采纳,获得10
3秒前
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
木川发布了新的文献求助10
4秒前
ding应助myf采纳,获得10
4秒前
札七完成签到,获得积分10
4秒前
平常丝完成签到,获得积分10
4秒前
4秒前
猪猪发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
7秒前
CodeCraft应助sct采纳,获得10
7秒前
夏d完成签到 ,获得积分10
7秒前
科研通AI2S应助怎么办采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545991
求助须知:如何正确求助?哪些是违规求助? 4631933
关于积分的说明 14623692
捐赠科研通 4573623
什么是DOI,文献DOI怎么找? 2507694
邀请新用户注册赠送积分活动 1484354
关于科研通互助平台的介绍 1455637