Deep Learning Based Decision Support Framework for Cardiovascular Disease Prediction

计算机科学 人工智能 疾病 决策支持系统 深度学习 机器学习 医学 内科学
作者
Nitten Singh Rajjliwal,Girija Chetty
标识
DOI:10.1109/csde53843.2021.9718459
摘要

In this paper we propose a novel decision support framework based on deep learning for cardiovascular disease prediction. The proposed framework based on an innovative stacked dense neural layer and convolution neural network cascade architecture, addresses the significant imbalance in class distribution in CVD event detection task. The experimental evaluation of the proposed model was done on the NHANES super-dataset, obtained by fusion of different subsets of publicly NHANES (National Health and Nutrition Examination Survey) data for prediction of cardiovascular disease. Many machines and deep learning models have been proposed in the literature for CVD event detection. However, they assume balanced class distribution between positive and negative disease classes. For clinical settings, there is significant class imbalance, with few positive class samples as compared to abundant samples from normal or control class. Hence most of the traditional machine and deep learning models are vulnerable to class imbalance, even after using class-specific adjustment of weights (well established method for handling class imbalance) and can lead to poor performance for the minority class detection. The proposed model based on stacked-Dense-CNN cascade architecture is robust and resilient to the class imbalance and has better overall detection accuracy. The first stage of the stacked-Dense-CNN cascade consists of an optimal feature learning stage, comprising a LASSO (least absolute shrinkage and selection) and majority voting step, for extraction of significant and homogenized features. The second stage use of a novel stacked-Dense-CNN cascade model and a novel model development protocol involving an unique train-test dataset partitioning strategy. Also, by using a specific training routine per epoch, similar to the simulated annealing approach, it was possible to achieve enhanced detection performance, particularly for detection of minority class, and robustness to class imbalance. The experimental evaluation of the novel stacked-Dense-CNN cascade model on a super dataset obtained by fusing multiple data subsets of publicly available NHANES data, resulted in an accuracy of 81.8% accuracy for negative CVD cases (majority class), and 85% for the positive CVD cases (minority class), an improved performance as compared to previously proposed research approaches for imbalanced clinical data settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柠七完成签到,获得积分10
1秒前
酷波er应助wuwuw采纳,获得10
1秒前
FR完成签到,获得积分10
1秒前
烟花应助benny279采纳,获得10
2秒前
CR发布了新的文献求助10
2秒前
科研通AI6应助有只小狗采纳,获得10
2秒前
4秒前
阿浮完成签到 ,获得积分10
4秒前
青蛙的第二滴口水完成签到,获得积分10
4秒前
传奇3应助洗衣卡采纳,获得10
4秒前
橙海晚风完成签到 ,获得积分10
5秒前
6秒前
SophieLiu完成签到,获得积分10
7秒前
超级苹果完成签到 ,获得积分10
8秒前
香菜味钠片完成签到,获得积分10
10秒前
史雷完成签到,获得积分10
13秒前
13秒前
火羊宝发布了新的文献求助10
13秒前
anhao完成签到,获得积分10
14秒前
斯平M.D.完成签到,获得积分10
16秒前
16秒前
17秒前
瘦瘦的代丝完成签到,获得积分10
17秒前
CipherSage应助emanon采纳,获得10
18秒前
彭于晏应助洗衣卡采纳,获得10
18秒前
沙克几十块完成签到,获得积分0
18秒前
A溶大美噶完成签到,获得积分10
18秒前
文献搜索小能手完成签到,获得积分10
18秒前
19秒前
大橙子发布了新的文献求助10
19秒前
kanglan发布了新的文献求助10
20秒前
20秒前
义气完成签到,获得积分10
21秒前
笑点低香魔完成签到,获得积分10
22秒前
22秒前
积极的绿竹完成签到,获得积分10
23秒前
NiL发布了新的文献求助10
23秒前
weihe发布了新的文献求助10
24秒前
啊呀完成签到,获得积分10
24秒前
moonlin完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910937
求助须知:如何正确求助?哪些是违规求助? 4186480
关于积分的说明 13000160
捐赠科研通 3954103
什么是DOI,文献DOI怎么找? 2168267
邀请新用户注册赠送积分活动 1186667
关于科研通互助平台的介绍 1093974