重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Deep Learning Based Decision Support Framework for Cardiovascular Disease Prediction

计算机科学 人工智能 疾病 决策支持系统 深度学习 机器学习 医学 内科学
作者
Nitten Singh Rajjliwal,Girija Chetty
标识
DOI:10.1109/csde53843.2021.9718459
摘要

In this paper we propose a novel decision support framework based on deep learning for cardiovascular disease prediction. The proposed framework based on an innovative stacked dense neural layer and convolution neural network cascade architecture, addresses the significant imbalance in class distribution in CVD event detection task. The experimental evaluation of the proposed model was done on the NHANES super-dataset, obtained by fusion of different subsets of publicly NHANES (National Health and Nutrition Examination Survey) data for prediction of cardiovascular disease. Many machines and deep learning models have been proposed in the literature for CVD event detection. However, they assume balanced class distribution between positive and negative disease classes. For clinical settings, there is significant class imbalance, with few positive class samples as compared to abundant samples from normal or control class. Hence most of the traditional machine and deep learning models are vulnerable to class imbalance, even after using class-specific adjustment of weights (well established method for handling class imbalance) and can lead to poor performance for the minority class detection. The proposed model based on stacked-Dense-CNN cascade architecture is robust and resilient to the class imbalance and has better overall detection accuracy. The first stage of the stacked-Dense-CNN cascade consists of an optimal feature learning stage, comprising a LASSO (least absolute shrinkage and selection) and majority voting step, for extraction of significant and homogenized features. The second stage use of a novel stacked-Dense-CNN cascade model and a novel model development protocol involving an unique train-test dataset partitioning strategy. Also, by using a specific training routine per epoch, similar to the simulated annealing approach, it was possible to achieve enhanced detection performance, particularly for detection of minority class, and robustness to class imbalance. The experimental evaluation of the novel stacked-Dense-CNN cascade model on a super dataset obtained by fusing multiple data subsets of publicly available NHANES data, resulted in an accuracy of 81.8% accuracy for negative CVD cases (majority class), and 85% for the positive CVD cases (minority class), an improved performance as compared to previously proposed research approaches for imbalanced clinical data settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sh完成签到,获得积分10
刚刚
1秒前
4秒前
4秒前
我是老大应助181s采纳,获得10
4秒前
浮游应助YingQin采纳,获得10
4秒前
5秒前
5秒前
bkagyin应助谢佳冀采纳,获得10
6秒前
wxx完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
yang完成签到,获得积分10
7秒前
7秒前
8秒前
悦耳溪流发布了新的文献求助10
8秒前
所所应助xiaostou采纳,获得10
9秒前
10秒前
5411完成签到 ,获得积分10
10秒前
橙子完成签到,获得积分10
11秒前
kiki发布了新的文献求助10
12秒前
陈胍胍的皮完成签到,获得积分10
12秒前
苦咖啡完成签到,获得积分10
12秒前
12秒前
愿好发布了新的文献求助10
13秒前
13秒前
13秒前
信天翁完成签到,获得积分10
13秒前
kmy发布了新的文献求助10
13秒前
GGBond完成签到,获得积分10
14秒前
清风伴夜亭完成签到,获得积分10
15秒前
15秒前
15秒前
Zx_1993应助nini采纳,获得10
15秒前
飞跃完成签到 ,获得积分10
16秒前
谢佳冀完成签到,获得积分10
16秒前
852应助乐观的眼睛采纳,获得10
16秒前
科研通AI6应助xiaoniuma采纳,获得10
17秒前
arizaki7完成签到,获得积分10
17秒前
17秒前
saikun发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466189
求助须知:如何正确求助?哪些是违规求助? 4570151
关于积分的说明 14323225
捐赠科研通 4496641
什么是DOI,文献DOI怎么找? 2463456
邀请新用户注册赠送积分活动 1452353
关于科研通互助平台的介绍 1427516