Deep Learning Based Decision Support Framework for Cardiovascular Disease Prediction

计算机科学 人工智能 疾病 决策支持系统 深度学习 机器学习 医学 内科学
作者
Nitten Singh Rajjliwal,Girija Chetty
标识
DOI:10.1109/csde53843.2021.9718459
摘要

In this paper we propose a novel decision support framework based on deep learning for cardiovascular disease prediction. The proposed framework based on an innovative stacked dense neural layer and convolution neural network cascade architecture, addresses the significant imbalance in class distribution in CVD event detection task. The experimental evaluation of the proposed model was done on the NHANES super-dataset, obtained by fusion of different subsets of publicly NHANES (National Health and Nutrition Examination Survey) data for prediction of cardiovascular disease. Many machines and deep learning models have been proposed in the literature for CVD event detection. However, they assume balanced class distribution between positive and negative disease classes. For clinical settings, there is significant class imbalance, with few positive class samples as compared to abundant samples from normal or control class. Hence most of the traditional machine and deep learning models are vulnerable to class imbalance, even after using class-specific adjustment of weights (well established method for handling class imbalance) and can lead to poor performance for the minority class detection. The proposed model based on stacked-Dense-CNN cascade architecture is robust and resilient to the class imbalance and has better overall detection accuracy. The first stage of the stacked-Dense-CNN cascade consists of an optimal feature learning stage, comprising a LASSO (least absolute shrinkage and selection) and majority voting step, for extraction of significant and homogenized features. The second stage use of a novel stacked-Dense-CNN cascade model and a novel model development protocol involving an unique train-test dataset partitioning strategy. Also, by using a specific training routine per epoch, similar to the simulated annealing approach, it was possible to achieve enhanced detection performance, particularly for detection of minority class, and robustness to class imbalance. The experimental evaluation of the novel stacked-Dense-CNN cascade model on a super dataset obtained by fusing multiple data subsets of publicly available NHANES data, resulted in an accuracy of 81.8% accuracy for negative CVD cases (majority class), and 85% for the positive CVD cases (minority class), an improved performance as compared to previously proposed research approaches for imbalanced clinical data settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duxh123完成签到 ,获得积分10
3秒前
欢呼的茗茗完成签到 ,获得积分10
3秒前
周三完成签到,获得积分10
7秒前
传奇3应助毛毛弟采纳,获得10
13秒前
maclogos完成签到,获得积分10
16秒前
跳跃老五完成签到 ,获得积分10
18秒前
前程似锦完成签到 ,获得积分10
28秒前
33秒前
哈哈哈完成签到 ,获得积分10
35秒前
summer完成签到,获得积分10
37秒前
taotaotao完成签到 ,获得积分10
40秒前
自有龙骧完成签到 ,获得积分10
42秒前
Shrimp完成签到 ,获得积分10
47秒前
思源应助毛毛弟采纳,获得10
48秒前
善学以致用应助汎影采纳,获得10
54秒前
yiren完成签到 ,获得积分10
56秒前
ni完成签到 ,获得积分10
56秒前
deathmask完成签到 ,获得积分10
57秒前
老迟到的小蘑菇完成签到,获得积分10
57秒前
健壮的凝冬完成签到 ,获得积分10
1分钟前
4652376完成签到,获得积分10
1分钟前
眯眯眼的裙子完成签到 ,获得积分10
1分钟前
tmobiusx完成签到,获得积分10
1分钟前
今后应助汎影采纳,获得10
1分钟前
mmyhn应助毛毛弟采纳,获得10
1分钟前
life完成签到 ,获得积分10
1分钟前
小蘑菇应助汎影采纳,获得10
1分钟前
doclarrin完成签到 ,获得积分10
1分钟前
李新光完成签到 ,获得积分10
1分钟前
科研通AI5应助汎影采纳,获得10
1分钟前
CHSLN完成签到 ,获得积分10
1分钟前
有信心完成签到 ,获得积分10
1分钟前
Lucas应助汎影采纳,获得10
1分钟前
leecarp完成签到 ,获得积分10
1分钟前
allrubbish完成签到,获得积分10
1分钟前
celia完成签到 ,获得积分10
1分钟前
情怀应助汎影采纳,获得10
1分钟前
没用的三轮完成签到,获得积分10
1分钟前
gmjinfeng完成签到,获得积分0
1分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516411
求助须知:如何正确求助?哪些是违规求助? 3098675
关于积分的说明 9240333
捐赠科研通 2793775
什么是DOI,文献DOI怎么找? 1533253
邀请新用户注册赠送积分活动 712634
科研通“疑难数据库(出版商)”最低求助积分说明 707403