Deep Learning Based Decision Support Framework for Cardiovascular Disease Prediction

计算机科学 人工智能 疾病 决策支持系统 深度学习 机器学习 医学 内科学
作者
Nitten Singh Rajjliwal,Girija Chetty
标识
DOI:10.1109/csde53843.2021.9718459
摘要

In this paper we propose a novel decision support framework based on deep learning for cardiovascular disease prediction. The proposed framework based on an innovative stacked dense neural layer and convolution neural network cascade architecture, addresses the significant imbalance in class distribution in CVD event detection task. The experimental evaluation of the proposed model was done on the NHANES super-dataset, obtained by fusion of different subsets of publicly NHANES (National Health and Nutrition Examination Survey) data for prediction of cardiovascular disease. Many machines and deep learning models have been proposed in the literature for CVD event detection. However, they assume balanced class distribution between positive and negative disease classes. For clinical settings, there is significant class imbalance, with few positive class samples as compared to abundant samples from normal or control class. Hence most of the traditional machine and deep learning models are vulnerable to class imbalance, even after using class-specific adjustment of weights (well established method for handling class imbalance) and can lead to poor performance for the minority class detection. The proposed model based on stacked-Dense-CNN cascade architecture is robust and resilient to the class imbalance and has better overall detection accuracy. The first stage of the stacked-Dense-CNN cascade consists of an optimal feature learning stage, comprising a LASSO (least absolute shrinkage and selection) and majority voting step, for extraction of significant and homogenized features. The second stage use of a novel stacked-Dense-CNN cascade model and a novel model development protocol involving an unique train-test dataset partitioning strategy. Also, by using a specific training routine per epoch, similar to the simulated annealing approach, it was possible to achieve enhanced detection performance, particularly for detection of minority class, and robustness to class imbalance. The experimental evaluation of the novel stacked-Dense-CNN cascade model on a super dataset obtained by fusing multiple data subsets of publicly available NHANES data, resulted in an accuracy of 81.8% accuracy for negative CVD cases (majority class), and 85% for the positive CVD cases (minority class), an improved performance as compared to previously proposed research approaches for imbalanced clinical data settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
季红完成签到,获得积分10
刚刚
刚刚
啦啦啦~完成签到,获得积分10
刚刚
1秒前
丘比特应助就晚安喽采纳,获得10
1秒前
1秒前
火星上的糖豆完成签到,获得积分10
1秒前
Sakura发布了新的文献求助10
1秒前
1秒前
1秒前
没有蛀牙发布了新的文献求助10
2秒前
2秒前
周周完成签到,获得积分10
3秒前
wh雨发布了新的文献求助10
3秒前
4秒前
烂漫大地完成签到,获得积分10
4秒前
黑白和完成签到 ,获得积分10
4秒前
4秒前
小巧紊发布了新的文献求助10
5秒前
SHAO应助star采纳,获得10
5秒前
5秒前
TWOTP发布了新的文献求助10
6秒前
早日发文章完成签到 ,获得积分10
6秒前
斯文败类应助小六采纳,获得10
6秒前
聪慧芷巧发布了新的文献求助10
6秒前
叮当发布了新的文献求助10
6秒前
烂漫大地发布了新的文献求助10
7秒前
7秒前
Stroeve发布了新的文献求助10
7秒前
8秒前
SciGPT应助典雅的静采纳,获得10
8秒前
MTF发布了新的文献求助10
8秒前
思源应助wh雨采纳,获得10
9秒前
ppg123应助你腿毛有点长采纳,获得10
9秒前
shi完成签到,获得积分10
9秒前
华仔应助Sakura采纳,获得10
9秒前
南瓜饼完成签到,获得积分10
10秒前
麦辣鸡腿堡完成签到,获得积分10
10秒前
花痴的手套完成签到 ,获得积分10
10秒前
小呱发布了新的文献求助10
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978596
求助须知:如何正确求助?哪些是违规求助? 3522689
关于积分的说明 11214402
捐赠科研通 3260158
什么是DOI,文献DOI怎么找? 1799770
邀请新用户注册赠送积分活动 878659
科研通“疑难数据库(出版商)”最低求助积分说明 807033