Bimetallic AuPt alloy nanoparticles decorated on ZnO nanowires towards efficient and selective H2S gas sensing

双金属片 纳米线 材料科学 纳米颗粒 纳米技术 合金 化学工程 冶金 金属 工程类
作者
Yiping Liu,Li‐Yuan Zhu,Pu Feng,Congcong Dang,Ming Li,Hong‐Liang Lu,Liming Gao
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:367: 132024-132024 被引量:33
标识
DOI:10.1016/j.snb.2022.132024
摘要

The development of high-performance H 2 S sensor is imperative for monitoring H 2 S in the living environment. Metal oxide semiconductors (MOSs) have been regarded as the strongest candidates for H 2 S detection due to their high sensitivity, miniaturization, and good durability. However, a single MOS-based gas sensor is unable to selectively detect gases, which limits its practical application. Functionalization of noble metal nanoparticles (e.g., Pt, Pd, and Au) on the surface of MOS can improve its selectivity. Herein, ZnO nanowires decorated with AuPt bimetallic nanoparticles are designed and fabricated on MEMS for H 2 S detection. The AuPt@ZnO nanowires-based sensor shows a response of 17.7–20 ppm H 2 S at 300 °C which is 4.0 times higher than that of pristine ZnO nanowires-based sensor. The sensor also exhibits a rapid response-recovery process, brilliant long-term stability, and excellent selectivity to H 2 S among various interfering gases. The remarkable improvement of the sensing performance, especially selectivity, could be ascribed to the electronic and chemical sensitization and the synergistic effect of the AuPt bimetal. Thus, the AuPt@ZnO nanowires-based sensor has a great potential application for H 2 S detection. • The AuPt@ZnO nanowires were synthesized by a hydrothermal method and reduction treatment. • The AuPt@ZnO-based sensor towards H 2 S was prepared via simply dropping the AuPt@ZnO nanowires solution on the MEMS. • The AuPt@ZnO-based sensor exhibited high response, excellent selectivity and short response time towards H 2 S. • The electronic and chemical sensitization and the synergistic effect of the AuPt bimetal could improve sensing properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
1a651da完成签到,获得积分10
2秒前
科研通AI2S应助稳重向南采纳,获得10
2秒前
wertyt完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
whisper发布了新的文献求助10
6秒前
llg发布了新的文献求助10
6秒前
6秒前
6秒前
SUN完成签到,获得积分20
7秒前
水深三英尺完成签到,获得积分10
7秒前
合适怡完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
10秒前
11秒前
烟花应助llg采纳,获得10
11秒前
筱筱发布了新的文献求助10
11秒前
jzhou65完成签到,获得积分20
11秒前
12秒前
在水一方应助MQRR采纳,获得10
12秒前
12秒前
13秒前
14秒前
14秒前
酷波er应助冷傲的柜子采纳,获得10
15秒前
云宝发布了新的文献求助10
16秒前
bangbangsh发布了新的文献求助100
16秒前
二一而已发布了新的文献求助10
17秒前
whisper完成签到,获得积分20
17秒前
17秒前
17秒前
17秒前
缓慢凝梦发布了新的文献求助10
17秒前
优雅的lord完成签到,获得积分20
18秒前
18秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242929
求助须知:如何正确求助?哪些是违规求助? 2887037
关于积分的说明 8245962
捐赠科研通 2555600
什么是DOI,文献DOI怎么找? 1383752
科研通“疑难数据库(出版商)”最低求助积分说明 649728
邀请新用户注册赠送积分活动 625625