反推
控制理论(社会学)
控制器(灌溉)
边界(拓扑)
数学
可逆矩阵
指数稳定性
转化(遗传学)
理论(学习稳定性)
模式(计算机接口)
计算机科学
数学分析
控制(管理)
非线性系统
自适应控制
物理
量子力学
人工智能
操作系统
生物化学
化学
机器学习
基因
纯数学
农学
生物
作者
Juan Chen,Bo Zhuang,Yajuan Yu
标识
DOI:10.1080/00207721.2022.2074567
摘要
In this paper we study the asymptotic stabilisation for coupled time fractional reaction diffusion (FRD) systems with time varying delays and input disturbances by backstepping-based boundary sliding-mode control. Here, the spatially varying diffusion coefficients can be same or distinct. To stabilise the system, we first use an invertible backstepping transformation to convert an original dynamics into a target dynamics with new manipulable inputs and perturbations. Then, we employ the sliding-mode algorithm to design this discontinuous controller to suppress disturbances. In this case, we obtain the combined backstepping/sliding-mode controller of the original dynamics. By using the fractional Halanay's inequality, the delay-independent stability condition is obtained for the asymptotic stabilisation of the delayed target system and therefore of the delayed original system under the combined controller. Fractional numerical examples are given to verify the efficiency of the proposed synthesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI